OSR 14-357# (Rev 3-30-93) Stores: 26-12801

Westinghouse Savannah River Company Document Approval Sheet

Document No. WSRC-TR-94-0142	
UC/C Number	

Title Final Report: Enhanced Waste Tan			
Primary Author/Contact /Must be Wene	K Level Model (U)		
Mark H. Dulghan	C) Location 786-5A	Phone No.	Position
Organization Code	Organization (No	5-8256	Senior Engineer
L1180	Safety Technol	Appreviations) ogy Department/Experimental Ti	
Other Authors		-37 Copartment/Experimental 11	hermal-Fluids Group
Keywords HLW, Waste Tanks Leak Detaction		Retention Period	Time of D
HLW, Waste Tanks, Leak Detection ntended Usage	System, Level Indica	ators Permanent	Type of Record ☐ Lifetime ☒ Permanen
	Document Type	Conference/Meeting/Presenta	ation Extended Fermanen
☐ Software	on ☐ Abstract ☐ Paper	· · · · · · · · · · · · · · · · · · ·	
Other	▼ Technical	☐ Published Proceeding	
lo. of Copies Dea	adline	Meeting/Journal Title (No Abbre	viations)
Reports			
Quarterly		Meeting Address (City, State, Co	
Semiannual Phase I Annual Phase II		only, State, Ca	ountry)
☑ Final ☐ Other		Meeting Date(s)	
eport Dates			(m/d/y) thru (m/d/y)
thru		Sponsor	(may)
(MRP 3.25) and in DOE-SR orders, and	the content of the exten	ince with policies set forth in WSRC nal distribution must be limited to tha	management requirements and procedures it actually approved.
	's Signature	nal distribution must be limited to tha	management requirements and procedures actually approved. 26 - 9 4 Date
Mark P. Author provals by Author's Organization riverive Classifilm	's Signature Classification	nal distribution must be limited to tha	t actually approved. 26 - 94 Date
Mack P. Author provals by Author's Organization riverive Classifilm	's Signature Classification unclassified	nal distribution must be limited to tha	tactually approved. 26 - 9 4 Date Distribution Unlimited
Author's Organization rivative Classifier planations port is the result of Task No. 93-042	's Signature Classification unclassified	Topic	t actually approved. 26 - 9 4 Date Distribution Unlimited
Author Author's Organization riverive Classifier Author Solanations port is the result of Task No. 93-042	's Signature Classification unclassified Manage	Topic Topic	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier Planations port is the result of Task No. 93-042 ager's Name R. Muhibaier R. Muhibaier R. Muhibaier R. Michibaier R. Muhibaier	's Signature Classification unclassified Manage	Topic Topic	t actually approved. 26 - 9 4 Date Distribution Maturity Unlimited Limited (Explain below)
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name R. Muhlbaier sification Information (To be complete assification (Check one for each)	's Signature Classification unclassified Manage od by Classification Revi	Topic Topic Topic White Management of the state of the	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name R. Muhlbaier sification Information (To be complete assification (Check one for each) verall S C UCNI S	's Signature Classification unclassified Manage od by Classification Review Classific	Topic Topic	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author Author's Organization rivative Classifier Planations port is the result of Task No. 93-042 Author's Organization rivative Classifier Author Author's Organization rivative Classifier Planations port is the result of Task No. 93-042 Author Author's Organization rivation rivation for a subject of the complete assification (Check one for each) Author Author's Organization rivation rivation for a subject of the complete assification (Check one for each) Author Author's Organization rivation rivation for a subject of the complete assification (Check one for each) Author Author's Organization rivation rivation rivation rivation for a subject of the complete rivation riva	Classification unclassified Manage Mod by Classification Review Classific	Topic Topic Topic White Management of the state of the	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author Author	Signature Classification unclassified Manage ed by Classification Review Classific	Topic Topic Topic White Management of the state of the	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author Author's Organization rivative Classifier Planations port is the result of Task No. 93-042 Author's Organization rivative Classifier Author Author's Organization rivative Classifier Planations port is the result of Task No. 93-042 Author Author's Organization rivation rivation for a subject of the complete assification (Check one for each) Author Author's Organization rivation rivation for a subject of the complete assification (Check one for each) Author Author's Organization rivation rivation for a subject of the complete assification (Check one for each) Author Author's Organization rivation rivation rivation rivation for a subject of the complete rivation riva	Signature Classification unclassified Manage ed by Classification Review Classific	Topic Topic Topic White Management of the state of the	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name A. Muhibaier assification Information (To be complete assification (Check one for each) verall	Signature Classification unclassified Manage ed by Classification Review Classific	Topic Topic Topic Topic Topic Topic Topic Topic Topic	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name A. Muhibaier assification Information (To be complete assification (Check one for each) verall betract S C UCNI Le S Le Le Le Le Le Le Le Le	Signature Classification unclassified Manage ed by Classification Review Classific	Topic Topic Topic White Management of the state of the	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name A. Muhibaier assification Information (To be complete assification (Check one for each) verall	Signature Classification unclassified Manage d by Classification Revi	Topic Topic Topic Tassification Officer's Signature	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name R. Muhlbaier sification Information (To be complete assification (Check one for each) verall	Signature Classification unclassified Manage d by Classification Revi	Topic Topic Topic Tassification Officer's Signature	t actually approved. 26 - 9 4 Date Distribution Unlimited Limited (Explain belo
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name A. Muhibaier assification Information (To be complete assification (Check one for each) verall	Signature Classification unclassified Manage ed by Classification Review Classific	Topic Topic Tassification Officer's Signature Suse Only	actually approved. 26 - 9 Date Distribution Unlimited Limited (Explain below
Author Author Author Provals by Author's Organization rivative Classifier Plantions Port is the result of Task No. 93-042 Author Provals by Author's Organization Plantion Information Author Autho	Signature Classification unclassified Manage d by Classification Revi	Topic Topic Topic Tassification Officer's Signature	actually approved. 26 - 9 Date Distribution Unlimited Limited (Explain below
Author's Organization rivative Classifier planations port is the result of Task No. 93-042 ager's Name R. Muhlbaier sification Information (To be complete assification (Check one for each) verall	Signature Classification unclassified Manage d by Classification Revi	Topic Topic Tassification Officer's Signature Suse Only	actually approved. 26 - 9 Date Distribution Unlimited Limited (Explain below

684301

WSRC-TR-94-0142

FINAL REPORT: ENHANCED WASTE TANK LEVEL MODEL (U)

Author: M. R. DUIGNAN

March, 1994

Patent Status

This internal management report is being transmitted without DOE patent clearance, and no further dissemination or publication shall be made of the report without prior approval of the DOE-SR patent counsel.

Westinghouse Savannah River Corporation Savannah River Technology Center Aiken, SC 29808

Prepared for the U.S. Department of Energy under Contract DE-AC09-89SR18035

DISCLAIMER

This report was prepared by the Westinghouse Savannah River Corporation (Westinghouse) for the United States Department of Energy under Contract DE-AC09-89SR18035 and is an account of work performed under that Contract. Neither the United States, the United States Department of Energy, nor Westinghouse, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed herein, or represents that its use will not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, mark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by Westinghouse or by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

484301

STD SAFETY TECHNOLOGY DEPARTMENT

WSRC-TR-94-0142 Task No.: 93-042-0 SCOPING ANALYSIS

KEYWORDS:
H AREA
WASTE MANAGEMENT
HIGH-LEVEL WASTES
WASTE TANKS
COMPUTER
MODEL
ENVIRONMENTAL EFFECTS
LEAK DETECTION SYSTEM
LEVEL INDICATORS

RETENTION: PERMANENT

FINAL REPORT: ENHANCED WASTE TANK LEVEL MODEL (U)

bу

M. R. DUIGNAN

Author

ISSUED: March, 1994

SRTC SAVANNAH RIVER TECHNOLOGY CENTER, AIKEN, SC 29808
Westinghouse Savannah River Corporation
Prepared for the U.S. Department of Energy under
Contract DE-AC09-89SR18035

Document:

WSRC-TR-94-0142

Title:

FINAL REPORT: ENHANCED WASTE TANK

LEVEL MODEL (U)

Task:

93-042-0

Task title:

ENHANCED WASTE TANK LEVEL MODEL

TTR No:

HLE-TTR-9305

TTR Date:

05-27-93

A	n	n		Λ	*7	^	ì	
<i>-</i>	υ	n	Г	U	v	а	п	,

J. L. Steimke, Technical reviewer

726/94

Date

D. R. Muhlbaier, Responsible manager

Date

M. R. Buckner, Level 3 manager

n a fa

Dov	(Dogg	D-4-	Description of major revisions Revision
nev.	Page No.	Date	Revision
No. 0	No.	3/94	Initial Release
		ï	
			•

Executive Summary

Under Technical Task: 93-042-0 (approved, 08/18/93), which is the result of Technical Task Request: HLE-TTR-93053 (issued 05/27/93), a "user-friendly" model was developed to capture environmental effects on the waste level in Harea waste tanks. Before the model was developed a sensitivity study was done to determine the important effects on the waste level changes. For each of the effects a model was developed, but because of either a lack of information or complexity, the models are simple. The models are then used to determine each contribution to the change in level. All the contributions are combined to obtain an overall change in waste level over a fixed period.

As requested, the model was developed to be easy to use and its basic operation can be learned in a short time period. Despite its simplicity, the model is considered more comprehensive then the existing model, which only allows for the thermal expansion and contraction of supernate. However, it is still limited by several simplifying assumptions, listed herein, to make the problem tractable. Improvements can be made as better knowledge is obtained concerning the chemistry of the tank contents, the thermodynamic state of the contents, and local variables, e.g., atmospheric conditions, purge gas condenser condition, amount of salt cake, amount of liquid in the salt cake.

Good agreement was shown to exist between the model's output to one tank's (41) measured level history, during the Spring and Summer seasons for a one year period (92-93), but the agreement diverges during the cooler seasons. The reason for the divergence is not known. While the model indicated that the waste level should have decreased during the colder and drier seasons (because of evaporation, contraction, and precipitation of salts) the measured level remained relatively constant. Some reasons for the divergence may be that evaporation was retarded (e.g., when there is no purge gas flow), an inleakage of mass to the tank occurred, the model does not properly capture level-changing mechanisms during the cooler seasons, or some type of gas accumulation was occurring within the salt cake. At the end of the one-year period the new model accounted for approximately 2 inches of the measured 4.5-inch change (the divergence during the cooler seasons was approximately 2 inches). In all cases, the new model tracked the measured waste level better than the existing model and therefore its use is recommended.

Finally, no attempt was made to model the presence of gas in the salt cake and makes no assumption about the presence of gas. The high-frequency (daily) fluctuations in waste level (< 0.2") have been shown to correspond to the daily changes in atmospheric pressure, based on an ideal-gas relation. This agreement implies that a fixed amount of gas void may be trapped in the salt cake. However, over longer periods these fluctuations average out and are unimportant. What is not clear, is if gases accumulate in the salt cake, leading to a net effect of increasing the waste level. While this accumulation of gases is not believed to exist (or exists for small amounts of gas and for short periods of time) this fact has yet to be proved.

Acknowledgments

I would like to thank the assistance of all the H-Area Tank Farm personnel who assisted me to understand the problems in waste-tank levels and in amassing the data, so that historical comparisons could be made. Especially, I thank Jeff Pike, Bill Phillips, and John Marra. Special thanks goes to the Co-op student, Nick Walker, who did some necessary literature searches and to the visiting high school mathematics teacher, Cynthia Smith (during her eight-week stay at SRS through The Ruth Patrick Science Foundation), who began the unenviable task of putting the almost 50k-element data base of atmospheric data into a usable form. I would also like to thank the reviewers who input always produce a better product, T. L. Spatz, on the operation of the spreadsheet and J. L. Steimke, on the tasks reports. Finally, the work could not be done without the support and guidance of my management, Al Garrett, Dave Crowley, and Dave Muhlbaier.

Nomenclature*

ρ	- Density
H-Area i M _{H2O}	 Location of High-Level Waste Tanks at SRS Electrolyte multiplier Mass H₂O per mass dry gas
NaOH NaNO ₂ NaNO ₃ NaAIO ₂ Na ₂ CO ₃ Na ₂ SO ₄	- Sodium Hydroxide - Sodium Nitrite - Sodium Nitrate - Sodium Aluminate - Sodium Carbonate - Sodium Sulfate
P P _{mixture} P _{wv@sat}	 Pressure Pressure of the purge-gas/water-vapor mixture Saturation pressure of water vapor at the mixture temperature
Preduced	- The partial pressure or the water vapor in the tank which is reduced from the vapor pressure that would exit above the liquid in the tank if it were pure water
RH SRTC SRS Tank 41 T Wg Xi	i.e., containing no electrolytes (Eq. 4). Relative Humidity Savannah River Technology Center Savannah River Site One type (type 3A) of waste tank in H-Area Temperature Mass flow rate of gas Mole fraction of the ith electrolyte

^{*} Description are only for the body of the report, not Appendix I

Enhanced Tank Level Model - final report - WSRC-94-0142, Rev. 0

Table of Contents

			Page
1.0.	INTRODUCTION		1
2.0	DESCRIPTION OF T	'ASK	3
3.0	DETERMINATION (OF CHANGE IN WASTE LEVEL	4
4.0	CONCLUSIONS		·
5.0	MODEL SOFTWARE		15
6.0	REFERENCES		19
7.0	FIGURES		19
8.0	APPENDIX I:		20
5.0	ALTENDIA I	EXCEL SPREADSHEET MODEL	34

1.0. INTRODUCTION

With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded which are unexplained. This is especially true for Tank 41, but not limited to that tank. An unexplained change of one (1) inch in the waste level is a reportable event. Qualitative observations indicate that much of the unexplained level change may be explained by environmental effects, i.e., changes in level due to changes in atmospheric pressure, temperature, and relative humidity. Quantitatively, some of the waste-level changes have been explained by using a model that indicates the thermal expansion of the tanks' contents (but the contents are assumed to consist of only supernate). Unfortunately, that model does not work for all tanks, nor at all times for the tanks it gives reasonable level results. That model is limited in scope, but can be enhanced by incorporating other changes which occur because of environmental changes. To this end, a more extensive model was developed to determine the waste-level changes in the H-Area Tanks. In this way, reported unexplained waste-level changes will be more meaningful.

1.1. DATA BASES

The waste tank data base used, to determine how well the current model tracks waste-level changes, is from Tank 41 of H-Area. Any tank could have been used and during any time period, but it was from the large unexplained increases in waste level in Tank 41 which instigated the need for a more comprehensive model. The period selected for Tank 41 is from 05-08-92 to 06-06-93 during which time the waste level increased approximately four (4) inches with no apparent explanation. Also, Tank 41 was chosen because most of the level is of salt cake (≈ 80%), with a shallow pool of supernate lying on its top, and the environmental effects to salt cake had yet to be modeled. This salt cake complicates the situation in that it has a different expansion rate than supernate and the crystallized salts may dissolve into the supernate which affects both the mass contents and the density of the supernate. This data base consisted of daily readings of: a salt cake temperature, a supernate temperature, a steel tank temperature, and the measured waste level.

Another data base was necessary of the outside environment. The Environmental Transport Group of SRTC (1) supplied the necessary information for the year's period already mentioned. That data base consists of hourly readings of atmospheric: temperature, pressure, and humidity. Unfortunately, these data are not from H-Area but from the Central Shops Area at ground level (the nearest meteorological station). While the data base is almost complete several days of information were not available and were filled in with data from Bush field station. On occasion, no data were available at all, and those days were discarded. Finally, for each day the values for hourly air temperature, pressure, and relative humidity were averaged from 07:00 to 11:00 (i.e., the hourly readings taken at 7, 8, 9, 10, and 11 am). These averages were used to determine the daily water content in the air.

1.2. OVERALL ASSUMPTIONS

The accuracy of the model depends on whether all possible mechanisms which respond to environmental effects are captured and on the assumptions

imposed on each mechanism, to make the problem tractable. Of course, to incorporate all possible mechanisms is very complex and may not be effective because some effects cause changes that are insignificant when compared to the overall level change, or because the increased amount of the uncertainty, when including an effect, would decrease the certainty in a change of level.

This report is broken up into individual sections, and in each the important assumptions are listed. The assumptions listed below affect the entire model:

1. No gas, or gas generation, is present in the salt cake.

- 2. Measured temperatures which are generally local, time dependent, values are taken to be representative of the entire body in which they reside, e.g., supernate, salt cake, and to be constant from the previous time they were measured, e.g., the previous day.
- 2. All changes are determined after thermodynamic equilibrium has been reached.

3. Each effect on level is independent.

4. Uncertainties in known or measured variables are due to independent causes.

1.3. MODEL STEPS

The model has been broken down into six (6) steps, where a step is defined as the process of determining a change in waste level due to a specified mechanism. To facilitate the understanding of what each contribution has on the change in level the result of each step has been listed separately in the model output sheet (Appendix I). Likewise, each step list its uncertainty separately to be able to refine the model more efficiently at the appropriate times. The steps are listed below (see also Fig. 1):

Prestep: Determine the specific gravity of the supernate at current supernate temperature from the specific gravity which was determined through an analytical measurement made at an earlier time, and possibly a different temperature.

[Note about the prestep: Specific gravity is corrected to current temperature of the supernate. This is necessary because the chemistry of each tank is measured less frequently than the daily waste-level monitorings and this analytical measurement may be carried out under different conditions than exist in the tank, i.e., laboratory conditions. Measurements of the supernate chemistry give the three primary salt concentrations, the pH, and the specific gravity of the supernate. The temperature of the analytical test may differ from the tank temperature so the specific gravity is corrected to the current tank temperature. The concentrations are not corrected because the information necessary to make a correction has a high level of uncertainty and any improvement would be questionable.]

Step 1: Determine the change in waste level due to the In-tank condensation/evaporation which occurs because of a water vapor-pressure reduction caused by the supernate salt contents.

Step 2: Determine the change in waste level due to condensation at the purgegas condenser coil exit.

Step 3: Determine the change in waste level due to the transfer of mass between the salt cake and the supernate. That is, mass which dissolves from the solid into the supernate or precipitates from the supernate to the solid.

[Note about step 3: Two different changes to waste level are obtained from this step because this exchange of mass affects both the supernate and the salt cake. Example, for a temperature increase some of the salt cake dissolves into the supernate and therefore the solid will decrease in height due to the loss of mass. Conversely, the liquid will have an increase in height, due to the gain of mass. This exchange does not address the expansion/contraction due to the temperature, which are Steps 4 and 5.]

Step 4: Determine the change in waste level due to the thermal expansion/contraction of the salt cake.

Step 5: Determine the change in waste level due to the thermal expansion/contraction of the supernate.

[Note about step 5: Two different changes in the supernate will occur. That which is within the saturated salt cake, and the rest, which sits on top of the salt cake. Since the salt cake temperature, and its daily temperature changes, usually differ from those of the salt-cake free supernate, then different volumetric changes can be expected.]

Step 6: Determine the change in waste level due to thermal expansion/contraction carbon steel tank.

[Note about step 6: This effect is generally insignificant to the other effects but is included because of past concerns to its importance.]

2.0. DESCRIPTION OF TASK

This task was broken down into two categories: 1. Determining important environmental effects on waste level, and 2. developing of a model which relates the waste-level changes in a tank to environmental changes. To study the effects, one specific tank was chosen which contains the majority of features of other tanks, so that the model would be general. Tank 41 was selected because: 1. it has had unexplained changes in waste level, 2. of its features: of type 3A design, 3. of using an accurate reel tape to record level, 4. its contents include both liquid and solid mass, etc.

This task was carried out by first proposing to the customer the important environmental effects on the waste level in the task plan (2). Each effect was studied individually and then a model was developed, which then was applied to tank 41 conditions over approximately a year's time. These studies culminated in an overall model which treats each effect independent of the other, assuming the overall change to be the sum of all the changes.

3.0. DETERMINATION OF CHANGE IN WASTE LEVEL

3.1. SPECIFIC GRAVITY CORRECTION

This is considered a prestep of the level determination model

Determine the specific gravity of the supernate at current supernate temperature from the specific gravity which was determined through an analytical measurement made at an earlier time and possibly a different temperature.

3.1.1. Prestep assumptions

1. Liquid is at a uniform temperature.

2. Supernate consists NaOH, NaNO3, NaNO2, and water only.

3. NaNO₃ and NaNO₂ have the same density-temperature response.

4. Density values listed in Tables 6 & 7 of Appendix I are in error by less than 1%.

3.1.2. Correction

As shown in the prestep of Appendix I, Tables 6 & 7 are used to obtain an interpolated value of the change in supernate density with temperature. Table 6 is for $NaNO_3$ and this table is also assumed to be valid for $NaNO_2$. This correction may or may not be significant depending on the temperature difference between the current supernate in the tank and when the specific gravity was actually measured.

3.1.3. <u>Uncertainties</u>

The true uncertainty cannot be determined because the actual supernate contains other compounds not measured or monitored. Even if the other compounds were known, as well as their concentration, the density information for those species may not be available. For the purpose of this model the uncertainty will be estimated from the uncertainties of the temperature measurements, the tabular values, and chemical concentration measurements of each compound in the supernate.

3.2. CONDENSATION AND EVAPORATION

Under this category, the concern is if there were a net gain or loss to the tank contents which results from a change in the water content of the air, i.e., from that which enters the tank, to that which leaves the tank. There are two primary means of mass transfer between the incoming purge gas and the tank: the first mechanism is, the reduction of the vapor pressure of the water vapor in the incoming purge gas because of the salt content of the supernate. From this process, water will condense out of the purge gas when the vapor pressure reduction causes the incoming purge gas to be super-saturated with water vapor, or water will evaporate from the supernate if the incoming purge gas is below saturation. The second mechanism is, the condensation of water vapor at the purge-gas condenser when the condenser exit temperature is at the dew point. The condensed water then drips into the tank and mixes with the supernate. Each mechanism is outlined below:

3.2.1. Determine the change in waste level due to the in-tank condensation/ evaporation which occurs because of a water vapor-pressure reduction caused by the supernate salt content

This is considered Step 1 of the level determination model

The saline environment in the tank reduces the vapor pressure of the water above the supernate and therefore the purge-gas/water-vapor mixture may be super-saturated upon entering. If so, water vapor will condense until equilibrium is reached, if its in-tank residence time is long enough. It is also possible to have superheated water vapor entering the tank which would cause a net loss of water from the supernate surface to the purge gas. To estimate the mass transfer to or from the surface, some simplifying assumptions were made: 1. the purge-gas/water-vapor mixture, that enters the tank, attains the supernate temperature before it exits (a rough estimate showed that the residence time of an air/water-vapor mixture in the tank is approximately 5 hours, assuming that the flow rate is 320 cfm and the waste level is 356.5", which is on the same order of the time necessary to heat up the air to the supernate temperature, through conduction alone), 2. the diffusion rate of the evaporating water is faster than the gas residence time (3), 3. the mixture reaches thermodynamic equilibrium, and 4. the reduced pressure effect of the supernate on the purge gas is known.

3.2.1.1. Assumptions to Step 1

- 1. The purge-gas/water-vapor mixture that enters the tank attains the supernate temperature before it exits (as stated above).
- 2. The diffusion rate of the evaporating water is faster than the gas residence time.
- 3. The mixture reaches thermodynamic equilibrium (so that the equilibrium relation, used below, is valid).
- 4. The reduced pressure effect of the supernate is known.
- 5. Specific Humidity varies \pm 12% of the calculated values over a 24 hour period (see subsection 3.2.1.3.).
- 6. The supernate is at a uniform and constant temperature.
- 7. Purge gas is either air or nitrogen.

3.2.1.2. Mass change model from the reduced pressure effect

To determine the change in waste level from the reduced vapor-pressure effect the amount of water vapor which enters and leaves the tank needs to be known.

The mass balance is: Rate of Water Mass Change in Tank =

Rate of Mass of Water Vapor Entering Tank - Rate of Mass of Water Vapor Leaving Tank

or, Rate of Water Mass Change in Tank =
$$W_g * (M_{H_2O, IN} - M_{H_2O, OUT})$$
 (1)
where, $W_g = Mass$ Flow Rate of Gas

Both quantities on the RHS of the Eq. 1 need to be determined. Without going into the details of the form of the equation (see for example reference (3)), the water vapor content of the air can be calculated by:

$$M_{H_2O} = \frac{Molecular \ Weight_{water \ vapor}}{Molecular \ Weight_{drygas}} * \left[\frac{Relative \ Humidity_{gas} * P_{wv@sat}}{(P_{mixture} \ - \ Relative \ Humidity_{gas} * P_{wv@sat})} \right]$$

or,

$$M_{H_2O} = (0.622_{air} \text{ or } 0.643_{N_2}) * \left[\frac{P_{mixture}}{\text{Relative Humidity}_{air} * P_{wv@sat}} - 1 \right]^{-1}$$
 (2)

where, $P_{mixture} = pressure$ of the purge-gas/water-vapor mixture and $P_{wv@sat} = saturation$ pressure of water vapor at the mixture temperature

The mass of water vapor entering the tank is determined with Eq. 2 when substituting the appropriate value which represent atmospheric conditions outside the tank. The mass rate of water vapor exiting the tank can be determined using:

$$M_{H_{2O}} = (0.622_{air} \text{ or } 0.643_{N_2}) * \left[\frac{P_{mixture}}{P_{reduced}} - 1 \right]^{-1}$$
 (3)

P_{reduced} = the partial pressure or the water vapor in the tank which is reduced from the vapor pressure that would exit above the liquid in the tank if it were pure water, i.e., containing no electrolytes.

This reduced pressure is a function of the supernate temperature, the concentration of solute particles, and the nature of those particles. This last dependency makes the reduced vapor pressure non-colligative because the solution is electrolytic. To get a rough estimate of the pressure reduction, results from reference (4) were used. From those results, and along with the following relation (5):

$$P_{reduced} = [1 - i*(X_1 + X_2 + ...)]*(P_{wv@sat}*Relative Humidity_{gas} \text{ at tank exit})$$
 (4)

where,

i = electrolyte multiplierX_i = mole fraction of the ith electrolyte

a multiplier of i = 1.25 was obtained by correlating the available data (4; also see, 6) with Eq. 4, and setting the chemical make-up of the supernate to be 6M-NaOH, 2M-NaNO3, and 1M-NaNO2. The multiplier was assumed to be the same for all three electrolytes. Realistically, i is dependent upon concentration, and to use Eq. 4 accurately, at other concentrations, more information on i is needed. As a first approximation, i may be assumed to be constant, and in practical terms it is probably close to the 1.25 determined. Of course, i is dependent upon concentration and for these electrolytes, which are made up of two ions each, then I should approach a value of 2, as the solution becomes more dilute. A poorer assumption, implicit here, is the chemical make-up of the supernate. There are probably other electrolytes in the supernate, e.g., NaAlO2, which would reduce the solvent (water) mole fraction and make the multiplier less valid, along with the form of Eq. 4. Also, assumed is that the relative humidity of the gas at the tank exit is 100%, because the tank should act similarly to an

adiabatic saturator with the long residence time and the considerable distance traveled by the purge gas over the supernate.

Figure 2 depicts the accumulated change in waste level in Tank 41 from the condensation and evaporation of water at the supernate surface due to the effect of water-vapor reduction. The figure shows approximately a one year period of accumulated daily waste-level changes, which were determined by summing the mass changes for each day. That waste-level change is compared to the overall measured waste-level change, Fig. 2. During the first 150 days and the last 50 days (the warmer-wetter seasons) the effect was insignificant. From 150 days to 300 days (the cooler-drier seasons) a significant decrease was experienced, totaling about 1.4" of liquid removed. The pressure reducing effect, for the specific chemical make-up in this tank, was such that the vapor pressure above the supernate was approximately 63% of the vapor pressure if the liquid were pure water. However, since the supernate temperature is usually higher than the outside atmospheric temperature the atmospheric relative humidity needed to be approximately 88% for condensation to occur in the tank (this is explained more in the next section). So on the average, there was a net loss to the atmosphere through evaporation, which explains the accumulated loss in waste level seen in Fig. 2.

3.2.1.3. About condensation/evaporation mass evaluation

As noted in the Introduction, the values used for the atmospheric Temperature (T), Pressure (P), and Relative Humidity (RH) were averaged from hourly values between 07:00 and 11:00, inclusive, to obtain a daily set of readings. There is concern about the accuracy of the data which represent how the tank waste reacts to environmental effects. The more accurate the water content of the incoming purge gas is known, the more accurate will be the result of the level change from condensation and evaporation in the waste tank. That is, when the mass change (defined as: the water-vapor mass entering the tank and the water-vapor mass leaving the tank) is determined on an instantaneous basis; while this is desirable, it is impractical. In reality, readings are obtained once a day of the atmospheric T, P, and RH, and these values fix the water content for that day. The question is: What effect do discrete (daily) readings have on accuracy? To answer this question another question needed to be answered first: Does the use of the 5-hour (i.e., readings at 7, 8, 9, 10, and 11 am) averaged values of T, P, and RH, chosen for this final report presentation, result in a water-vapor content which is representative for an entire day? The results are not shown here, but three one-month periods were checked (May, October, and January) and no significant differences were found in cumulative water-vapor content of the air at the end of each month period by either using an hour-by-hour mass difference or using a daily (five-hour average) mass difference. Now, with the latter question answered, then Fig. 2 can be used to answer the former question, i.e., to determine if an inaccurate change in waste level would be calculated when using only a single measurement per day of the atmospheric T, P, and RH. Result: If the change in waste level were based on the water content of the air determined from a single measurement taken at 06:00 each day, for an entire year, then there would be approximately 1.7 inches of supernate removed from the tank. Figure 2 shows that this amount of water removed is approximately 0.3 inch greater than what was actually removed (i.e., the figure shows that approximately 1.4 inches were removed at the end of the year period). While

this extra 0.3 inch is significant over a year's time, it is probably unimportant over shorter periods. The reason why the difference is not larger is that the while the hourly RH varies considerably, the water content is more stable. To illustrate, Fig. 3 shows one day which had large changes in T and RH, but the water content only had a standard deviation of approximately 12%. This amount of fluctuation will cause the 0.3 inch error by using discrete daily readings over a year's time. However, by taking only several hours of readings per day (shown above were five) an accurate value of the day's water content is obtained. For modeling purposes, it is expected that only a daily reading of T, P, and RH will be made so the uncertainty of waste-level change by condensation or evaporation will be at least 12% and corresponding greater if used on a cumulative basis.

3.2.1.4. Uncertainties

Each of the assumptions listed in subsection 3.2.1.1. can cause considerable uncertainties. Besides the uncertainty mentioned in subsection 3.2.1.3. the chemical make-up waste and its vapor pressure-reducing effect may be the largest source of error. Uncertainties that are accounted for in the model are: 1. measured values of pressure, temperature, relative humidity, purge gas flow rate, and concentrations; and 2. correlation uncertainties of water-vapor pressure, liquid-water density, and the electrolytic multiplier.

3.2.2. <u>Determine the change in waste level due to condensation at the purgegas condenser coil exit</u>

This is considered Step 2 of the level determination model

As shown in Fig. 4, if the conditions of the purge gas at the exit of the condenser are such that the water vapor is at saturation, then condensation will occur and the water will drip back into the tank causing an increase to the tank waste volume. The difficulty here is that the conditions of the purge gas at the exit of the condenser are generally not know because of the lack of instrumentation, i.e., temperature, pressure, and relative humidity. This contribution to the change in waste level may be important depending upon the rate of condensation, when it does exist. In lieu of more quantitative measurements, it is assumed that the purge gas has enough time to attain the exit coolant temperature as it exits the condenser, and it is assumed that the entrance and exit coolant temperatures are measured and readily available. Furthermore, there may not be any condensation if the temperature of the coolant is such that is does not absorb any energy from the purge gas (or if it transfers energy to the purge gas). Therefore, when the inlet coolant temperature is greater than or equal to the outlet temperature then no condensation will occur. When the inlet coolant temperature is less than the outlet temperature then energy has been transferred to the coolant and condensation is possible.

3.2.2.1. Assumptions to Step 2

The most important unknown here is the thermodynamic condition at the exit of the purge-gas condenser. An assumptions about that state, along with the other assumptions are:

(5)

- 1. The actual temperature of the purge gas is not measured, so it will be taken to be the condenser coolant-coil exit temperature.
- 2. When $T_{coil,inlet} => T_{coil, outlet}$ then the purge gas has passed through the condenser without condensing any of the water vapor and therefore, no water is returned to the tank. On the other hand, when $T_{coil,inlet} < T_{coil, outlet}$ it will be assumed to have condensed some of the water vapor.
- 3. The gas pressure at the coil exit is at atmospheric pressure (while the actual pressure will be slightly higher this should be a fair assumption because purge-gas absolute pressure has a secondary effect).
- 4. The purge gas and water vapor is a non-reacting mixture.

5. That the water vapor acts as an ideal gas.

- 6. The condenser exit temperature is at the dew-point temperature (this will be true if condensing).
- 7. The rate of purge-gas flow is of dry gas only (the mass of water vapor is less than 1% of the purge-gas mass and thus cause a insignificant error).

8. That thermal equilibrium exists.

3.2.2.2. Mass accumulation model from condensation at condenser

The mass balance is:

Rate of Water Mass Accumulation in Tank =

Rate of Water Vapor Entering Condenser - Rate of Water Vapor Leaving Condenser

The first term on the RHS of Eq. 5 is the same as the rate of water vapor leaving the tank, which was determined in subsection 3.2.1..2, Eq. 3. The second term on the RHS of Eq. 5 is the amount water vapor at the condenser exit, where the relative humidity is set to 1. Therefore, by setting the relative humidity in Eq. 2 to 100% the concentration of water vapor is:

$$M_{H_2O} = (0.622_{air} \text{ or } 0.643_{N_2}) * \left[\frac{P_{mixture}}{P_{wv@sat}} - 1 \right]^{-1}$$
(6)

where, $P_{mixture} = pressure$ of the air/water-vapor mixture $P_{wv@sat} = saturation$ pressure of water vapor at coolant-coil exit temperature

As stated in assumption 3, the absolute pressure of the mixture is assumed the same as atmospheric pressure; in reality P_{mixture} at the condenser exit generally will differ from atmospheric pressure but the difference is only a second order effect, compared to the changing water-vapor pressure. Properties, e.g., vapor pressure of water, densities, were obtained from reference 7.

Hourly data for atmospheric conditions (temperature, pressure, and relative humidity), during the period from 5/8/92 to 6/6/93, were used to determine how much water condensation collected in the waste tanks under varying conditions of the purge-gas condenser. (As stated in the Introduction, these atmospheric data were obtained from the measurement station located at the Central Shops (1).) The purge-gas conditions at the exit of the condenser were

set at 100% relative humidity, atmospheric pressure, and at 13°C. This temperature was an arbitrary choice but the parametric study (6: Fig. 2) showed that for an exit temperature above 25°C no significant condensation occurred over the year and for under 5°C most of the level change was accounted for. It is important to have accurate date of the coil exit temperature. The purge-gas flow rate was set to 320 cfm, even though it may have been higher at times.

3.2.2.3. Uncertainties

Since the amount of water that can be condensed from the purge gas depends partially on the amount of water vapor in the gas, which is coming from the waste tank, then most of the uncertainties listed in subsection 3.2.1.4. are appropriate here. They are: 1. measured values of pressure, temperature, relative humidity, purge gas flow rate, and concentrations; and 2. correlation uncertainties of water-vapor pressure, liquid-water density, and the electrolytic multiplier. The assumptions in subsection 3.2.2.1. are a source of larger uncertainties which cannot be readily quantified, but the uncertainties can be reduced substantially for subsection 3.2. by the method mentioned in the next subsection, 3.2.3.

3.2.3. Determining an accurate estimate of the water content of the incoming and exiting purge-gas/water-vapor mixture

For both subsections, 3.2.1 and 3.2.2, it is important to determine the amount of water which enters the control volume (the waste tank) and that which exits the tank/condenser. To avoid the uncertainties, mentioned in the above subsections, measurements should be taken, at periodic intervals (hourly, every six hours, etc.), of the temperature, pressure, and relative humidity at both the tank purge-gas entrance and exit of these three variables. With these measurements then Eqs. 1 and 2 can be used directly to determine the amount of water mass which is either left in the tank or lost to the atmosphere. In this way, the tank is treated like a black box and details about the vapor-reducing effects of the supernate and characteristics of the purge-gas condenser would be irrelevant. Likewise, the uncertainties would be reduced to the measurement uncertainties of the six variables, i.e., $T_{\rm in}$, $P_{\rm in}$, $RH_{\rm in}$, $T_{\rm out}$, $P_{\rm out}$, and $RH_{\rm out}$.

3.3. MASS EXCHANGE BETWEEN THE SUPERNATE AND THE SALT CAKE

This is considered Step 3 of the level determination model

Determine the change in waste level due to the transfer of mass between the Supernate and the Salt Cake. That is, the mass which dissolves from the solid into the supernate or precipitates from the supernate to the solid. The most important facts, which need to be known to determine the dissolution or precipitation of the waste contents, are: 1. What is the chemical composition of the liquid and the solid, 2. if the compounds in the aqueous solution are at their saturation limit and, 3. what are the solubilities of the various chemical components? Because of the complex make-up of the tank contents only the concentrations of the three main compounds in the tank are known, so several assumptions need to be made:

3.3.1. Assumptions to Step 3

Some of these assumptions are considered poor and can only be improved by obtaining more information concerning the solubility properties of the waste mixture.

- 1. The liquid is chemically saturated with the measured compounds which are in equilibrium with the solid.
- 2. Interpolated values of solubility from similar mixtures will give representative values of the true mixture solubility.
- 3. Average temperatures are uniform and constant throughout the substances, either supernate or salt cake.
- 4. Average temperature of the supernate within the salt cake is at the salt cake temperature.
- 5. The supernate within the salt cake has the same chemical make-up as the supernate which sit above the salt cake.
- 6. The mass transfer occurs much faster than the period over which this step's calculation is carried out (usually a day).
- 7. The chemical composition is that of NaOH, NaNO2, NaNO3, H2O alone.

Some of these assumptions may be relaxed since there is some experimental information of the solubilities of actual waste mixtures (8).

3.3.2. Mass exchange model between the supernate and the salt cake

To facilitate the development of this model solubility vs. temperature data for several simulant high-level and low-level wastes were estimated from figures in reference 8. According to that reference, the low-level waste contains principally sodium aluminate and the high-level waste contains principally sodium nitrate with some sulfate and carbonate. Those data were correlated by using least-square fit models and are listed in Tables 5a to 5e of Appendix I. The amount of sodium nitrite in those simulants was insignificant, so a solubility relationship is determined by the use of only the concentrations of NaOH and NaNO₃.

First, using the measured concentrations of NaOH and NaNO3 a specific solubility relationship is determined by interpolating among the five different simulant relations. With the estimated mixture solubility relation, the solubility wt% is determined for the supernate, which sit above the salt cake (see Fig. 1), at the previous temperature and the current temperature. The change in mass is then estimated for this portion of the supernate. This same process is repeated for the supernate within the salt cake, by using the previous and current salt-cake temperature. The two values of mass change are added to obtain the total mass change. This mass change is either the amount the supernate picked up from, or released to, the solid. Knowing the densities of the solid and liquid a waste height change for each can be calculated. Figure 5 shows how the mass of both the salt cake and the supernate varied through a year in Tank 41, due to the change of solubility of the supernate. Of a total estimated salt cake height of 190" (less the supernate void) it increased by about 1.5 inches and decreased by about 2 inches. Of the total estimated supernate height of 365" (less the salt cake) it increased to about 3.5 inches and decreased to about 2.5 inches. The overall effect of the mass transfer between the solid and liquid is shown in Fig. 6. There was a

maximum net decrease in waste level during the winter (≈ 1 "), when the temperature is the coldest, and a maximum net increase in waste level during the summer (≈ 1.5 "), when the temperature is the hottest. The purpose here is to determine the change of height because of the exchange of mass and not because of the thermal expansion or contraction of the liquid and solid. Those effects will be addressed in the following sections.

3.3.3. Uncertainties

The largest uncertainties are related to the lack of knowing the chemical make-up of the contents, which compounds are at saturation in the supernate, and what is in the appropriate solubility relationship. At present, these cannot be quantified so only the uncertainty of the available solubility correlations can be used along with the uncertainties in the primary compound concentrations, and the measured temperatures.

3.4. SALT CAKE VOLUME CHANGE DUE TO THERMAL EXPANSION/CONTRACTION

This is considered Step 4 of the level determination model

The main difficulty to determine thermal expansion effects on the salt cake is the lack of knowledge of its chemical make-up and the thermal expansion properties. The thermal expansion model that H-Area currently uses has many assumptions but the primary ones are that the tank contents are solely NaOH, NaNO₃, NaNO₂, and $\rm H_2O$ and that the waste is totally liquid. The goal here is to relax the latter assumption, but if possibly, the former too.

3.4.1. Assumptions to Step 4

- 1. Salt Cake is make of NaOH, NaNO₃, NaNO₂.
- 2. Temperature is uniform and constant throughout solid.
- 3. Amount of salt cake is known.
- 4. If sludge is present, its volume changes, due to temperature, similarly to that of the salt cake.
- 5. Tank diameter is not affected by temperature change.
- 6. Salt cake expands and contracts freely.
- 7. That $(1/\rho)(d\rho/dT)$ is independent of temperature.

3.4.2. Determine the change in waste level due to the thermal expansion/contraction of the Salt Cake,

Thermal expansion property data were found for solid salts: NaNO₃ and NaNO₂, but not NaOH. Moreover, the difficulty with these data is that the crystalline structures have differing expansion coefficients along each axis of the crystal. Data for polycrystalline structures for these compound were used and compared to data of simulate solid waste mixtures to determine applicability. Those simulant data were obtained from an experiment (9) to measure the linear coefficient of expansion of two different mock samples of salt-cake material (Purex: 3.40M-NaNO₃, 0.35M-Na₂CO₃, 0.08M-Na₂SO₄, 0.55M-NaAlO₂, 0.30M-NaOH and HM: 4.60M-NaNO₃, 2.20M-NaNO₂, 0.11M-Na₂SO₄, 0.84M-NaAlO₂, 0.50M-NaOH).

To determine a thermal coefficient of expansion which would be representative of the salt cake in the tanks a comparison was done. Figure 7 shows thermal expansion results, assuming that the entire waste contents were made of the each of the four solid phase salts that were mentioned above. To put these results in perspective they are compare to the expansion of the waste contents, as if they were entirely made of liquid supernate. [Note: For the curves shown in Fig. 7 the expansion coefficients of the pure salts, were obtained as a function of temperature, and were integrated over the pertinent temperature range. The coefficients of thermal expansion for the Purex- and HM-salt combinations were determined by reference (9) to vary insignificantly over the temperature range from 30°C to 200°C, therefore only constant values were stated. Notwithstanding, it seems unlikely that these two compounds have thermal expansion coefficients which vary insignificantly over the 170° temperature range, since all of the other pure compounds do vary significantly over the same temperature range. However, for the small temperature changes of this modeling effort the constant coefficient assumption is sufficient.] It appears that for small waste-temperature differences (generally the waste temperature is kept constant but a fluctuation of a degree or two is not uncommon) the expansion differences among all the solid salts was insignificant, relative to the supernate expansion. Further, the expansion of the solid salts significantly differ from the liquid supernate.

It is suggested, that until better property information is obtained on the thermal expansion of salt cake, the value of the HM-type salt (the lowest curve on Fig. 7) should be used, i.e., $3 \times 10^{-4} (10^{-4}$

3.4.3. <u>Uncertainties</u>

The main uncertainties are not knowing the exact make-up of the salt cake, its expansion properties, and temperature gradients. For this model the uncertainties are limited to those of the measured temperatures and to the value of the thermal expansion coefficient, listed above. The uncertainty of the expansion coefficient will be assumed to be 20%, or 0.204×10^{-4} (length) 3 /(length) 3 °C, which was estimated from the variation among the different solid salts shown in Fig. 7 along with the variations from the thermal coefficient of expansion because of being functions of temperature.

3.5. SUPERNATE VOLUME CHANGE DUE TO THERMAL EXPANSION/CONTRACTION

This is considered Step 5 of the level determination model

This step was the original model (10) used to determine the change in waste level by temperature. It assumed that the entire contents of a tank consisted solely of three compounds (NaOH, NaNO₃, NaNO₂) in an aqueous state, i.e., no solid were present. With respect to that model, this section uses the same data base of density vs. temperature data at different concentrations (obtained from reference 11).

3.5.1. Assumptions of Step 5

- 1. Tank diameter is not affected by the temperature change.
- 2. Liquid is at a uniform and constant temperature.
- 3. Waste consists of only NaOH, NaNO3, NaNO2.
- 4. NaNO₃, NaNO₂ liquids have the same density-temperature response.
- 5. Density values in Tables 5 & 6 of the Appendix I are in error by 5%.

3.5.2. <u>Determine the change in waste level due to the thermal expansion/contraction of the Supernate.</u>

Knowing the concentrations of the three compound, then Tables 5 and 6 of Appendix I are used to obtained interpolated values of the change in density with temperature. With the molar percentage of NaOH and NaNO3 & NaNO2, then one relationship for the supernate is obtained. However, since the temperature of the supernate, which sits on top of the salt cake (see Fig. 1), is usually at a different temperature than the supernate, which saturates the salt cake, a different relationship is obtained for each region. That is, the supernate has a measured temperature and it is assumed uniform and constant throughout the liquid above the salt cake. For the supernate which saturates the salt cake, its temperature, and temperature changes, should be closer to that of the salt cake, which is (generally) higher. More important than the absolute temperature value of the supernate, is the change in temperature. Obtaining the volumetric change of supernate, which is within the salt cake, by using the density vs. temperature relation based on the lower supernate temperature would not cause a large error because the absolute temperature difference between the supernate, above the salt cake, and the salt cake is not large. The fact is, the salt cake temperature changes do not always follow the supernate temperature changes. Many times there is a one or two degree temperature change of the supernate with no temperature change of the salt cake. For this reason, it is important to determine the different volumetric change of the supernate above the salt cake and that of the supernate within the salt cake to obtain a more accurate model. This is especially important for those tank which have a large percentage of salt cake like of Tank 4 where there is approximately the same amount of supernate within the salt cake as there is on top of the supernate. As mentioned above (subsection 3.4.2), Fig. 8 includes the effect of the supernate expansion and contraction with temperature, based on the estimated thermal-expansion data.

3.5.3. <u>Uncertainties</u>

Tabular values and measured temperatures and concentrations make up the calculated uncertainties. As already mentioned, the actual uncertainty is not knowing the correct expansion properties of the supernate.

CARBON STEEL-TANK VOLUME CHANGE 3.6.

This is considered Step 6 of the level determination model

The change of waste level from the thermal effects on the steel tank was included for completeness but is not necessary because of it insignificance to the overall change. The model only considers the thermal expansion of carbon steel and does not involve the complex geometry of the tank. The amount of effect this mechanism has on the overall waste-level change did not warrant a more elaborate model.

3.6.1. Assumptions of Step 6

- 1. The entire tank is made of carbon steel.
- 2. The thermal coefficient of expansion is constant with temperature.
- 3. The volumetric thermal coefficient of expansion is 3.3×10^{-5} /°C (valid: 10° C < T < 100° C).
- 4. The entire tank expands and contracts freely.
- 5. The measured annular temperatures are constant and uniform throughout
- 3.6.2. Determine the change in waste level due to thermal expansion/ contraction Carbon Steel Tank.

With the assumptions listed then determined the effect on the contents of the steel tank are straight forward and shown in Appendix I. Figure 9 compare the tank's effect on waste level to the overall measured waste-level change. As stated, the effect was insignificant.

3.6.3. <u>Uncertainties</u>

The main estimated uncertainties are from the measured temperature, the knowledge of the correct thermal coefficient of expansion. Not known is how the tank area actually changes with temperature. Using a more accurate model of the tank geometry which includes the toroidal shape, cooling coils and their support brackets, that the tank top is anchored to the concrete upper surface, etc., would give better results but the magnitude of the calculated level change should still be insignificant.

4.0. **CONCLUSIONS**

4.1. OVERALL COMPARISON

Figure 10 shows a comparison, over a period of a year, of the measured waste level in tank 41 to the existing model (10) and to the enhanced waste-level model, which is the sum of all the results of each of the effects listed in this

report. That is, the summing of the individual contributions shown in Figs. 2, 4, 6, 8, and 9 will result in the middle curve, depicted in Fig. 10. Specifically, the figure shows three curves: the top curve is the measured change of waste level in tank 41 during a year's period (excluding the known changes in level which occurred during planned waste transfers to and from the tank); the middle curve is of the new model which includes environmental effects on the waste tank, salt cake, supernate, and purge gas (but does not account for any gas that may be trapped in the salt cake); the bottom curve is of the existing model which is currently being used by H-area (it only assumes the waste to made of liquid supernate which responds to thermal contraction and expansion). Both the old and the new model are shown to follow the general (seasonal) trend of the measured waste-level changes but the new model appears to follow it closer, in both magnitude and slope. In fact, the main divergence is during a 3 month period, between the 150-day to 250-day marks. During these three month (Fall and Winter) the waste level would be expected to decrease because of the cooler (contraction of contents) and drier (evaporation of supernate) atmosphere, but the measured waste level remained constant.

Some reasons why the model diverges from the measured waste-level change are:

- 1. In-leakage of mass to the tank occurred.
- 2. No (or reduced) evaporation occurred (e.g., when there is no purge gas flow).
- 3. There was more condensation than estimated.
- 3. The model does not properly capture the level changing mechanisms during the cooler seasons.
- 4. The measured waste-level change is inaccurate.
- 5. There was gas generation which accumulated within the salt cake.

To better see when the model followed the measured accumulated waste-level change and when it did not, both sets of data were fitted to a least-square fit, and from those fits the slope of each curve was obtained. These curve fits are an average representation of the change in waste level, i.e., they smooth out the daily fluctuations to give the global temporal movement of waste level. Figure 11 shows the absolute difference between those slopes. During the first 150 days the difference in the rate of change remained within 0.005 inches/day (about 18 gallons/day), but then there was a steady increase in the difference to 0.015 inches/day (about 50 gallons/day). Finally, after 300 days the slopes began to converge again. Notwithstanding, at the end of the year's period the new model accounted for nearly 50% for the waste-level increase, a considerable improvement.

4.2. UNCERTAINTIES

In each of the different steps that comprise the model, an attempt has been made to address the underlying uncertainties. Even so, the true level of uncertainty is not known because of the many reasons, aforementioned. To obtain a feel for the overall uncertainty it has been estimated to be on the order of 50% of any particular day's level change. This is approximately the uncertainty estimated by the spreadsheet model, when including all the uncertainties for each step. Of course, rough estimates were made of measurement uncertainties of transducers (temperature, pressure, relative humidity, levels, flow rates), of analytical measurements of chemical

properties, and of estimates like salt cake height and percent liquid void. Also, estimate were made for the uncertainties on chemical and thermal property information, and on the many curve-fitted data bases. The actual uncertainties may be greater, but are probably smaller, even so, the largest uncertainties will come from the modeling assumptions which are not readily determinable. Therefore, with a 50% uncertainty chosen for one day's level change, the overall cumulative uncertainty is shown in Fig. 12. The darkest line represents a curve fit of the model's calculated level change, for the year. The two lighter curves is the estimated cumulative error. Since each days measurement and its uncertainty depends on the preceding day's results, the daily errors are not independent and therefore directly additive. Note, almost the entire divergence region, between the measured waste-level change and that determined by the model (150 days to 300 days), is bounded by the cumulative uncertainty.

4.3. SUGGESTIONS FOR IMPROVEMENT

Determining the change to waste level by each of the separate effects mentioned in this report would improve substantially by increasing the knowledge of the exact make-up of the waste composition (on a frequent basis) and of the thermal and chemical properties. Useful information would be details of the following:

- 1. Current chemical make-up of the supernate as well as its thermal and chemical properties. This is especially true when additions are made to the tank which can change the chemistry.
- 2. Make-up of the salt cake, as well as its thermal and chemical properties.
- 3. The chemical equilibrium of the solids with the liquids.
- 4. Specifics of the purge-gas condenser, especially the thermodynamic conditions of the purge gas at the condenser exit.
- 5. Purge-gas thermodynamic conditions and flow rates in the tank.
- 6. How the tank area changes with tank level.

All of the above information will lead to a better understanding on how the environment affects the waste level and thereby improving the model, so that changes in waste level can be better predicted. Of all the effects on changing waste level, those of most importance are the ones that cause irreversible changes because it is those types of changes which lead to net accumulated increases or decreases in level. Eventually, the net accumulation result in changes which need to be explained. Possible effects that lead to irreversible waste-level changes are: condensation from the purge-gas condenser, condensation/evaporation from the pressure reducing effect of the electrolytic liquid (irreversible if dissolution/precipitation, condensation/ evaporation, or mass addition to the tank change the chemical make-up of the supernate), gas accumulation within the salt cake, or dissolution of salt cake with temperature increases but no precipitation with a temperature decrease (will occurs when the liquid is not saturated with one or all of the salt cake compounds). These four irreversible effects are addressed below in the follow three subsections: 4.3.1., 4.3.2., and 4.3.3.

4.3.1. Increase Instrumentation

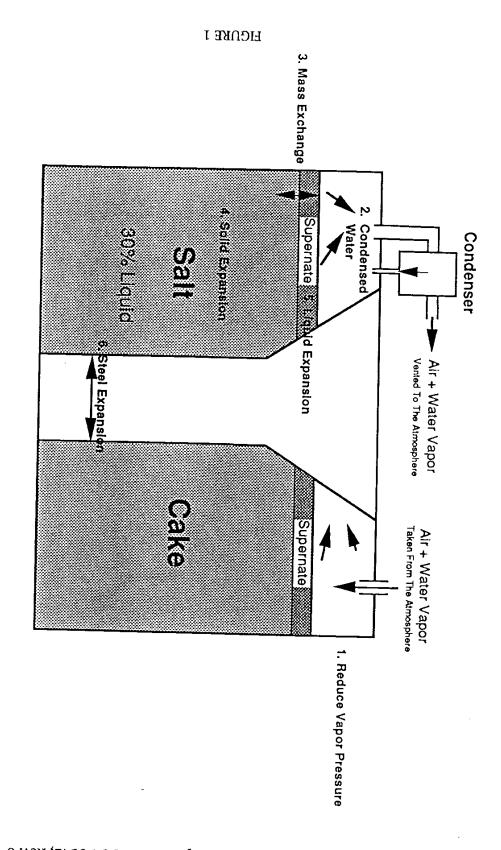
Of all the effects addressed by this report, those in steps 1 and 2 have the largest non-reversible effects, that is, condensation/evaporation at the supernate/purge-gas interface and condensation from the purge-gas condenser. Better information on the vapor pressure reducing effect, of the supernate, and condenser conditions will elicit a more accurate picture of the waste-level changes. However, as mentioned in subsection 3.2.3., by using transducers to measure the purge-gas temperature, pressure, and relative humidity at the tank entrance and exit then the exact change of water content in the purge gas is obtained and therefore the water which remained or escaped from the tank is accurately determined. This method treats the tank as black box and avoids the need to know the complex working inside the tank.

4.3.2. Determine Gas Accumulations in Salt Cake

An effect not addressed by this report, is the gas content and its generation is the salt cake. On 06-04-93 J. P. Morin demonstrated that if the salt cake in tank 41 had a fixed gas void of 10%, then the daily-measured waste-level fluctuations closely followed the daily atmospheric pressure changes, by using an ideal-gas law relation. Specifically, during a the "stable" tank-41 wastelevel period, from 12-01-92 to 01-24-93, the level was measured to be 359.0" and fluctuated ± 0.3 ", while the ideal-gas model determined a fluctuation of approximately \pm 0.2". Unfortunately, when the tank level was not stable and began to increase the model diverges, while still picking up the day-to-day fluctuations well. The only way to account for the level increases would be to assume that there was gas evolution and retention within the salt cake. From this gas void study, it appeared that there may well be a gaseous void within the salt cake from the good correlation between the measured high-frequency daily fluctuations (< 0.2") to daily waste-level change, determined from atmospheric pressure changes. The addition of a gas-void model to this report's model may improve the tracking of the daily ups and down in waste level, but that was not seen to be the focus of this effort: To determine if significant waste-level changes (one inch or greater) were due to environmental effects. The longer term (lower frequency) changes in waste level appear to be responsive to atmospheric temperature and water-content changes. Example: The first 150 days of Fig. 10 indicates a measured level change of approximately 2 inches and this report's model account for approximately 1.8 inches of that change. Even the supernate-only model accounted for 1 inch of the change. What is not known and would be important, is if there were an accumulation of gas within the salt cake. However, any gas accumulation would eventually have to escape and would probably escape in a sudden fashion which would be immediately noticeable through level detection and gas samplings. That occurrences have not been observed.

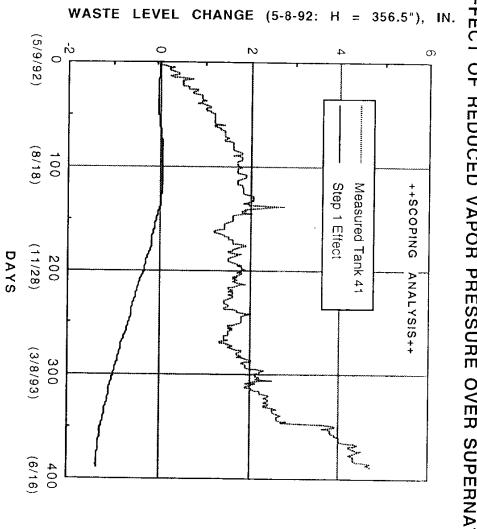
4.3.3. Experimental Testing for Dissolution/Precipitation

Figures 5 and 6 show the importance of understanding the dissolution/precipitation process to waste-level. Unfortunately, this knowledge is very difficult to obtain because of the need to know the current chemical make-up of the supernate and the salt cake, the solubility of each of the compounds in the supernate that make-up the salt cake, the homogeneity of the salt cake and


the homogeneity of the dissolved compounds, when this occurs. The logical step, to a better understanding, is to carry out an experiment of different saltcake/supernate combinations which are likely to exist in the waste tanks. These experiments can measure the true waste-level changes with temperature. These waste-level changes will include not only the changes to waste level due to dissolution and precipitation but also due to the thermal expansion and contraction of the tank's constituents.

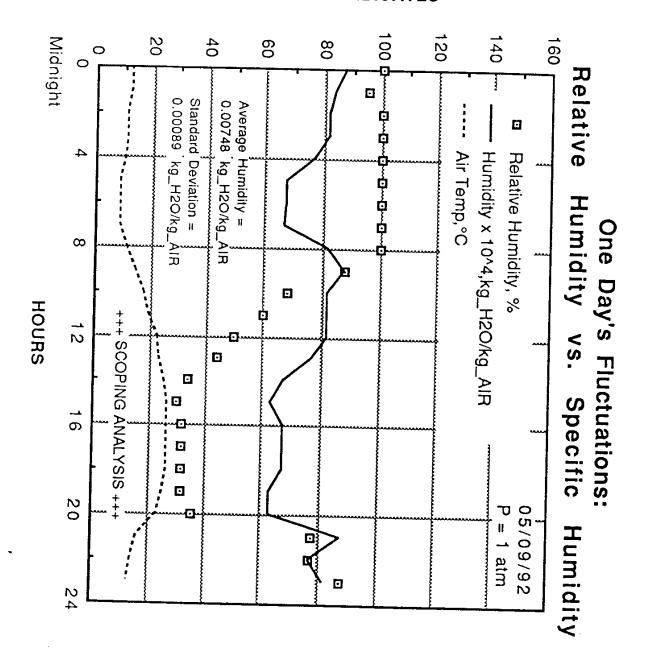
5.0 MODEL SOFTWARE

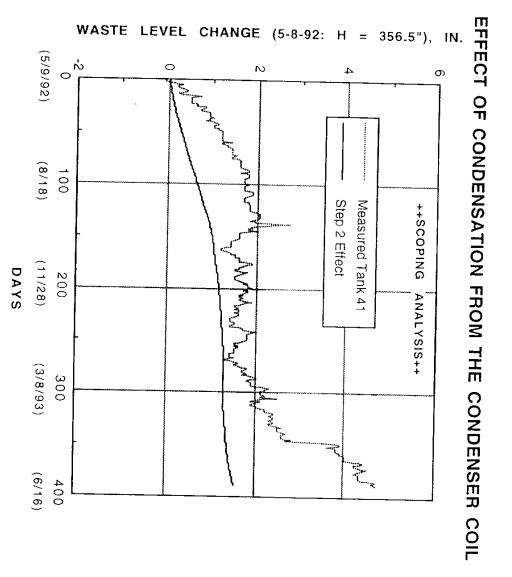
As requested, this model has been made such that it is "user-friendly," i.e., in a platform easy to access and learn. The first waste-level model (10) was developed in an Excel spreadsheet format and is readily accessible, and currently used, by the H-Area personnel. To minimize the amount of time that the personnel would need to learn how to operate the new model, the same spreadsheet format was followed. Figure 13 is a flowchart of how the software carries out the enhanced waste-level model. The sequence of the flow chart is the same as is listed in this report to aid understanding. When implementing the program the actual step-by-step process is hidden from the user. After the pertinent tank data are entered into the data sheet, the result is immediately available and shown in the input/output sheet of the program, Fig. 14. Along with the overall change in waste-level, the contribution of each step to the total waste-level change is listed for reference. Appendix I contains twenty-two pages that comprise the entire spreadsheet model. Not shown are the equations for each spreadsheet cell. The display of all the equations that go into the spreadsheet were not included in this report because they are readily available to anyone, by perusing the spreadsheet model, and their addition here would probably double the size of this report.


6.0. REFERENCES

- 1. Tatum, C., "Historical Temperature, Pressure, and Humidity Data (U)," Interoffice Memorandum No. SRT-ETS-93-0515, June 24, 1993.
- 2. Duignan, M. R., "Enhanced Waste Tank Level Model," Task Plan for Task No. 93-042-0, October 18, 1993.
- 3. Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, Inc., pp. 519-527, 1960.
- 4. Walker, D. D. and D. T. Hobbs, "Chemistry related to Tank 41 Volume Changes," Inter-office Memorandum No. SRT-LWP-92-0141, November, 16, 1992. 5. Masterton, W. L. and E. J. Slowinski, Chemical Principles, W. B. Saunders
- Company, 4th ed., pp. 294-295, 309-310, 1977.
- 6. Duignan, M. R., "Enhanced Tank Level Model-progress Report, rev. 1 (U)", Inter-Office Memorandum, No. SRT-ETF-930265, rev. 1, November 24, 1993.
- 7. Reynolds, W. C. and H. C. Perkins, Engineering Thermodynamics, McGraw-Hill Book Company, 2nd ed., pp. 393-395, 1977.
- 8. Goodlett, Claude B., "Concentration of Radioactive Wastes," Report No. DP-1135, June 1968.
- 9. Bull, Harcourt, III, "Thermal Expansion of Waste Salts," Report No. DPST-70-575, December 30, 1970.
- 10. Pike, J. A., "Tank Level Change Prediction Due To Temperature Changes in High Level Waste Tanks," software, Version 1.10, 03-31-93.
- 11. Perry, R. H., D. W. Green, and J. O. Maloney, Perry's Chemical Engineers' Handbook, McGraw-Hill Book Company, 6th ed., 1984.

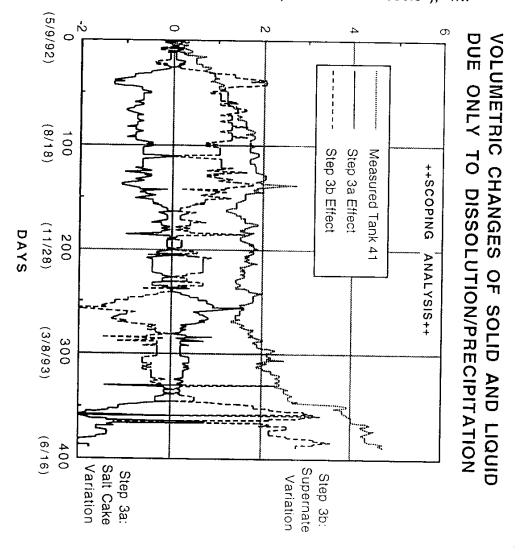
++ SCODING VANTASIS ++


EICHKE 5


EFFECT OF REDUCED VAPOR PRESSURE OVER SUPERNATE

HCURE 3

AS LEGEND INDICATES


FIGURE 4

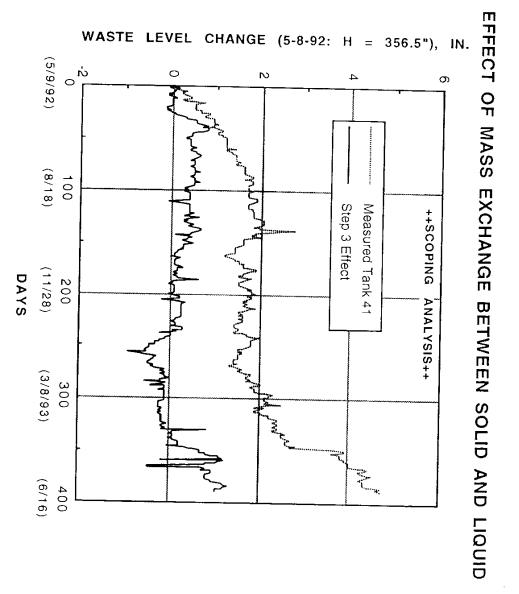
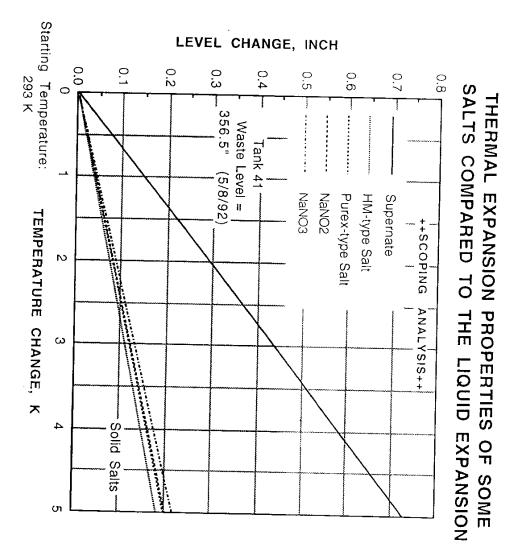
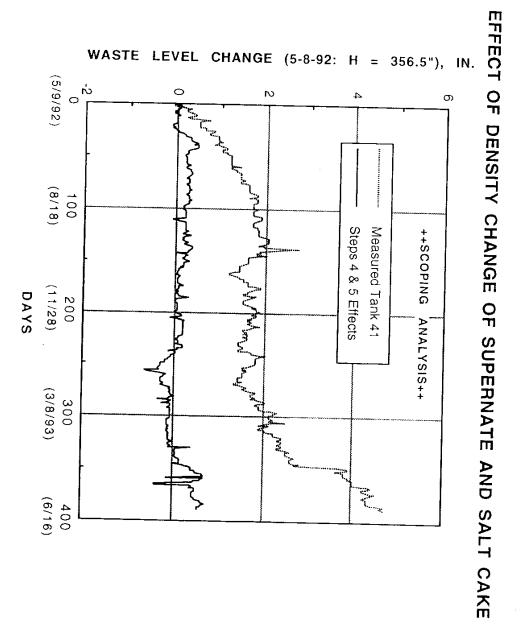
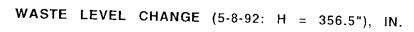
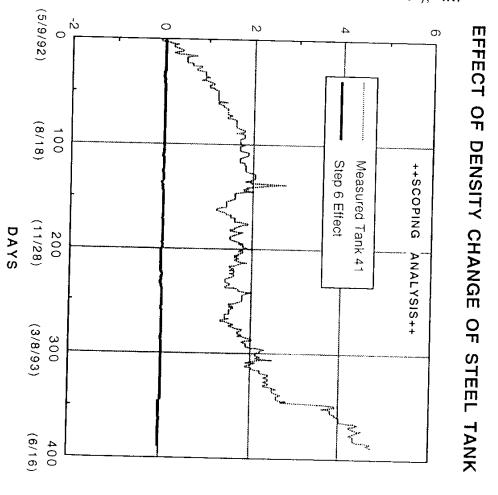

Enhanced Tank Level Model - final report - WSRC-94-0142, Rev. 0

FIGURE 5

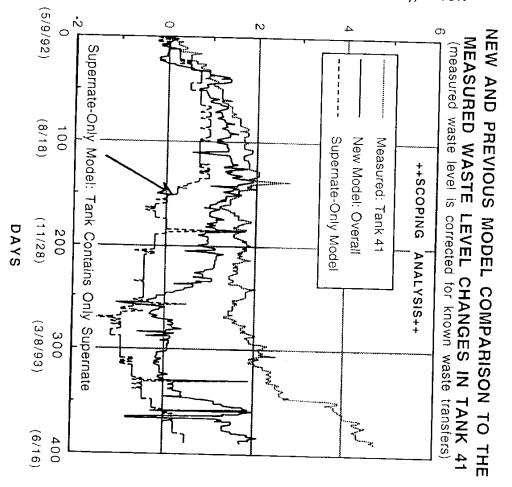

WASTE LEVEL CHANGE (5-8-92: H = 356.5"), IN.

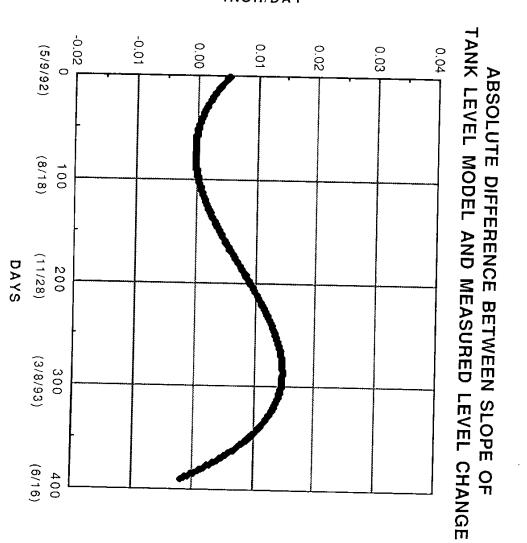


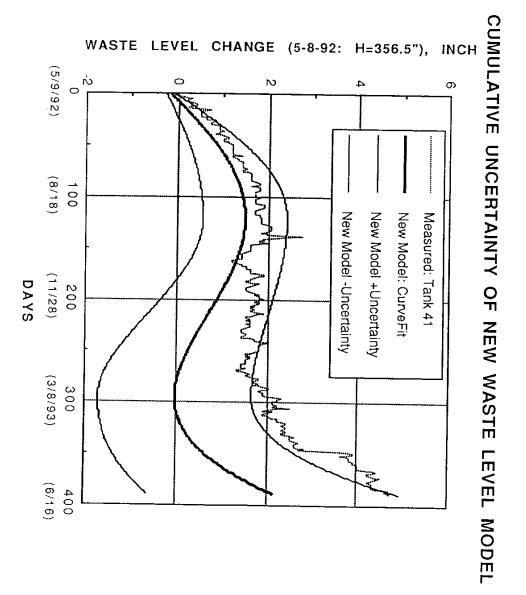

EICURE 6

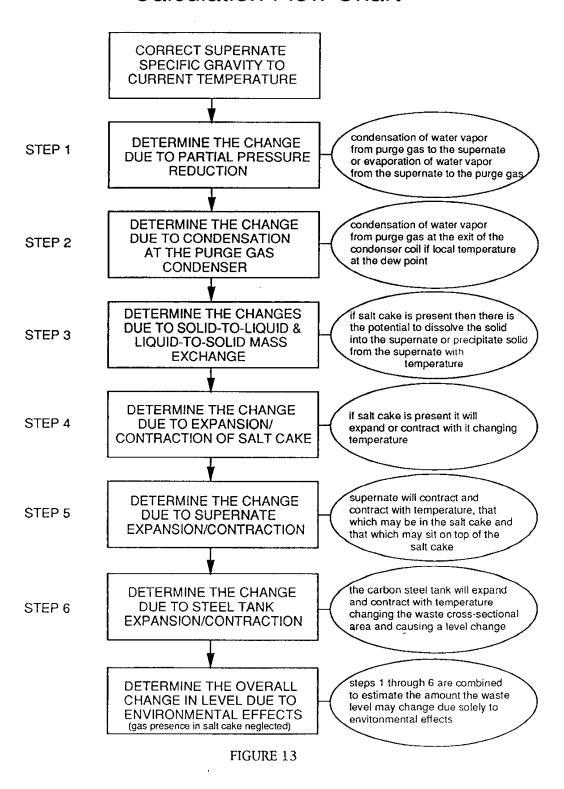


HENKE 1








EICORE 11

INCH/DAY

Calculation Flow Chart

input Data to	or Waste Tank	No.:	41			
_	MEAS. DATE:	MEAS. HOUR:	MEASURER'S	Previous	Current	Mass
Previous:	5/10/94	6	LAST NAME:	# Hours betwe	en mescure	Measuremt
Current:	5/11/94	6	DUIGNAN	ments =	24.00	Uncertainty
	emperature (°C				16.6	Orig.Units
Atmospheric P	ressure (millibai	·)				2
Atmospheric R	lelative Humidity	(%)			1021.2	10
Average Annul	us Temperature	(°C)		2.7	75.1	5
Average Salt C	ake Temperatur	e (°C)		2.9	28	2
Average Super	nate Temperatu	re (°C)		2.4	30	2
Condenser Coo	olant inlet Tempe	erature (°C)		6.5	2.5	2
Condenser Coo	olant Oulet Temp	erature (CCOT) (°C)		12	2
Condenser Gas	Oulet Temperat	ure = CCOT (°C	3		13	2
Specific Grav	ity of Supernat	e ((a/cm3)//a/c	ഗ സു ലാ∩ക്രംഗ	.,,	13	2
#Concentration	of NaOH (M)		(40 g/gmole)	'''	1,36	0.1
	of NaNO2 (M)		(49 g/gmole)		5.33	0.05
Concentration	of NaNO3 (M)		(85 alamata)		0.9	0.05
Measurements	of four items a	bove were at t	emperature of	/0C)	1.56	0.05
he Specific Gr	avity of Superna	ite at Current T	- emberature of	(*C)	2.4	2
otal Waste He	eight (in.)	ate at ourient 1	emperature		1.4	0.16
alt Cake Heigh				356.4	2	0.2
ssumed Liquid	Void of Salt Ca	ke (%)		29.0	?	1
low Rate of Pu	rge Gas (cfm)	(/0/	ı	30	?	5
pproximate Vo	lume-to-Height	Value (gallons	nor inch)		320	3
ype of Purge (Gas [Air (A) or N	litrogen (NN	рет тиси)		3510	3.5
nformation from	analytical labora	fory massurams	-4-		Α	N/A

New Waste Level: Uncertainty is based ONLY on neasurement uncertainties, and	356.68 in	ches ±	0.011	
otal Level Change:	0.28	100%	0.12	44%
		2.070	0.002	20%
fank Volume Change:	-0.008	2.6%	0.010	15%
iquid Density Change:	0.065	21.4%	0.005	26%
Solid Density Change:	0.021	6.8%		61%
Solid/Liquid Mass Exch.:	0.203	66.7%	0.123	38%
Condenser Condensate:	0.004	1.2%	0.002	39%
Partial Pressure Reduction:	-0.004	1.4%	0.002	%
Waste Level Change From	inches	% of total	inches	•
Results			Uncertai	im da . d

uncertainty in the assumptions listed in each Step, the actual uncertainty will be greater, i. e., the listed uncertainty should be considered a minimum. Uncertainties are assumed independent.

APPENDIX I: EXCEL SPREADSHEET MODEL

	Α	В	С	D	T =		
_1	Input Data fo	or Waste Tank	No.:	41	E	F	G
2		MEAS. DATE:	MEAS. HOUR:		Previous		<u> </u>
3	Previous:	5/10/92	6	LAST NAME:			Measuremt
4	Current:	5/11/92	6	DUIGNAN		veen measure-	Uncertainty
5	Atmospheric 1	emperature (°C		DOIGIVAN	ments =	24.00	Orig.Units
6		ressure (milliba		 		16.6	2
7	Atmospheric F	Relative Humidit	v (%)	 		1021.2	10
8	Average Annu	lus Temperature	(°C)	1		75.1	5
9	Average Salt (ake Temperatu	ro (°C)		27	2.8	2
10	Average Super	rnate Temperatu	(C)		2.9	30	2
11	Condenser Co.	olant Inlet Temp	oroture (CC)		2.4	2.5	2
12	Condenser Cor	plant Oulet Temp	erature (*C)	<u> </u>		12	2
13	Condenser Gas	Oulet Tempera	perature (CCO	1) (°C)		13	2
14	#Specific Gray	iby of Current	ture = CCOT (C)	<u> </u>	13	. 2
15	#Concentration	of NaOH (M)	ie ((g/cm3)/(g/		C))	1.36	0.1
16	#Concentration	of Navice (M)		(40 g/gmole)		6.33	0.05
17	#Concentration	of NaNO2 (M)		(69 g/gmole)		0.9	0.05
18	#Moscurement	or NaNO3 (M)		(85 g/gmole)		1.56	0.05
10	The Specific C	s of four items	above were at	temperature of	(°C)	24	2
30	Total Master III	ravity of Supern	ate at Current	Temperature		1.4	0.16
20	Total Waste He	eight (in.)			356.4	2	0.2
	Salt Cake Heigi				290	7	1
22	Assumed Liquid	Void of Salt Ca	ake (%)		30	7	5
23	Flow Rate of Pu	rge Gas (cfm)				320	3
24	Approximate Vo	olume-to-Height	Value (gallons	per inch)		3510	3.5
25	Type of Purge	Gas [Air (A) or	Nitrogen (N)]			Α	N/A
20 1	#Information from	analytical labora	tory measureme	ents			
27	Changes in W.	aste Level Due	To Effects L	Isted Below:		T	·
28						İ	
29 1	Results	1				ļ	
30	Waste Level Ch	ange From	inches	% of total		Uncertai	nty*
3 1 F	Partial Pressure	Reduction:	-0.004	1.4%		inches	%
	Condenser Cond		0.004			0.002	39%
	Solid/Liquid Mas		0.203	1.2%		0.001	38%
34 5	Solid Density Ch	ange:	0.203	66.7%		0.123	61%
3 5 L	iquid Density C	hange:	0.021	6.8%	· · · · · · · · · · · · · · · · · · ·	0.005	26%
36 T	ank Volume Ch	ange:		21.4%		0.010	15%
17			-0.008	2.6%		0.002	20%
8 T	otal Level Ch	ange:	0.28				
9	New Waste			100%		0.12	44%
	Uncertainty is F	ased ONLY	356.68 i	nches ±	0.24	inches	
1 m	neasurement up	pased ONLY on	mermodynami	c property info	rmation, curve	fitting, inputted	
2 u	ncertainty in the	certainties, and	irom the mode	els used to obta	ain the level ch	nanges. From th	ie
	moortainty in the	a assumptions t	isted in each S	step, the actual	Uncertainty we	Il ho grant :	
4	is listed uncerta	sincy should be	considered a n	ninimum. Unce	rtainties are a	ssumed independ	dent.
5							
6		<u>-</u>					
7		——————————————————————————————————————		<u> </u>	<u>.</u>		
				1	1		·

$\overline{}$	H	•	J				N
$\overline{}$	measured by:	DUIGNAN	on date:	K 5/11/92	at hour:	<u>М</u> 6	
- 1					ecific Gravity	1	
3					t may have bee	n t	
					rature of the su		
					alculation as gi	<u>'</u>	
					ed out in Step 5		
	also hold true f					1	
	Assumptions:	or trilo carodiat				1	
	1. Liquid is at a	a uniform temp	erature	. <u>.</u>			
	2. Waste consi	•		OH only			
					rature response		• • • • • • • • • • • • • • • • • • • •
12	z. runtee und	rtartoz ilgaroo	nato alo came	donoity temper	Tatalo respense	-	
	Supernate temi	nerature during	measurement	_	24		
	Supernate temperature during measurement Current supernate temperature =				25		
_	Avg. temperatu	•		nsion -	24.5	<u>_</u>	
16	Avg. temperatu	is to determine	thermal expan	13.011 =	24.0		
17		***Basaa	on original Sp	ecific Gravity***			
	The combined t					14.32 wt %	
	The weight per	_	<u> </u>	nd NaNOZ =		15.68 wt %	
	Interpolation W			Interpolation W		••••	
\rightarrow	d(density)/dT fo			d(density)/dT f			
-				`	given above fro	m Table 7	
-	at the variable			** *		6	
	beginning row i			beginning row		3	
$\overline{}$	beginning col in			beginning col in			
	(unc. of tabular		· · · · · · · · · · · · · · · · · · ·	(unc. of tabulal	r values assume		
26		Temperature, °			Temperature, °		
27	wt%	20	40	wt%	20	40	
28	12.00 wt %	1.0819	1.0724	12.00 wt %	1.1309	1.121	
29	16.00 wt %	1.1118	1.1013	16.00 wt %	1.1751	1.1645	
30							
31	14.32 wt %	1.06458658	1.055666	15.68 wt %	1.090275	1.081018	
32	there	efore at T= an		ther	efore at T= ar	d wt% =	
33		24.5	14.32		24.5	15.68	
34	density =	1,0626	g/cm3	density =	1.0882	g/cm3	
35	and (1/density)*(ddensity/dT)	=	and (1/densit	y)*(ddensity/dT) =	
36	4.1978E-04	/°C unc =	2.8172E-05	4.2532E-04	/°C unc =	9.3027E-06	
37							
38	Based on the r	nolar percentag	e then:	NaOH =		52.3%	
39				NaNO3 & NaNo	02 =	47.7%	···-
40	therefore (1/de	ensity)*(ddensi	ty/dT) =	4.2268E-04	/°C - unc =	.4.0507E-05	
	and for dT =		,	SpGr/SpGr =	4.2268E-04		
	Corrected Spo	Gr =	· ·			uncertainty	
43	1.36		0.00057484	=	1.4	0.2	
44							
45							
46							
47							

	7						
-	O I measured b	P	Q	R	S	T	U
		y: DUIGNA	N on date:	5/11/92	at hour:	6	
		ormine the of					
	In-Tank from	ermine the chan m the purge gas	ge in height fr	om condensation	on/evaporation		
-	in-Tank IIO	ili the purge gas	stream				
-		lio Ti isoni i	<u> </u>				
7		IS THERE SUI	PERNATE IN TAI	NK:	YES		
8	IHEH	REFORE: CONDE	NSATION AND I	EVAPORATION	CAN OCCUR*		
<u> </u>							
9							
1	1. The purge	e-gas / water-va	por mixture the	at enters the ta	nk attains		
1	une supernat	ie iemperature b	efore it exits (a rough estima	to choused the	it the	
1:	Fliesidelice (III	ije oi the mixture	n the tank is	annrovimatoly	E hours seem		
1	Jule HOW Tale	is 320 cim an i	ne waste level	is approximate	by DEET while	1.	
	Plotael of the	ume necessary	to heat up the	air to the supe	ernate tempera	ture	
	Turrough Conc	auction atone).	1				
16	2. the diffusion	on rate of the e	aporating water	er is faster than	the gas resid	lence	
<u> </u>	Truite (2 Hout:	S).	ı	ì	1		
18	3. The mixtur	re reaches thern	nodynamic equi	ilibrium (so that	the equilibrium		
	r pretation -used	i below- is valid)	L	l .			
20	4. The reduc	ed pressure effe	ct of the super	nate is known.			
121	5. Specific F	lumidity varies ±	12% of calcula	ted values over	a 24 hour ne	 riod	
22			1	ſ			
23	Water vapor	pressure at satu	ration from Tal	ble 1 for atmos	pheric condition		
24	_			T	T Condition		
25	Pwa	atervapor@sat =	18.91	millibars @ T=	16.6	~	
26			(Uncertainty:	2.5	millibars)	+	
27					1	+	
28	Mass of water	which ENTERS	the tank with the	he purge gas -	 		
29	Mass of Water	r Vapor / Mass	of Dry Purgo C	puigo gus			
30	[Mol.Wt.H2O//	Mol Wt Purge G	of Diy Fulge G	as =	<u> </u>	<u> </u>	
31		Mol.Wt.Purge Ga	isj / [P(aimosp	nere)/P(vapor	press of water	<u>') - 1] =</u>	
32	0.0088	kg-H2O/kg-Gas				<u> </u>	
33	(Uncertainty:		kg-H2O/kg-Gas				
34	,	0.0017	kg-mzo/kg-Gas	S)		4	
35	Mass of water	which LEAVES	the topk with "				
36	Mass of Water	Vapor/Mass of	the tank with the	ne purge gas =			
37	[Mol.Wt.H2O/A	Mol.Wt.Purge Ga	uige Gas =	hora\(B())			
38		l digo de	isji įr (atiliosp	nere)/P(reduce	d) - 1]		
39	P(reduced) = f	1 - 1.25*(X:NaO	H . Y-N-NOS	. V.M. NOON		L	
40	, - [1.25 (7.1140	T A.NaNUS	+ A:NaNO2)]*(F	watervapor@s	sat)	
	X:NaOH =	0.157	Y-NIANIOO			1	
42	uncertainty:				X:NaNO2 =	0.046	
43		3.013	uncertainty:	0.012	uncertainty:	0.006	
44		 		·			
45		-					
46							
47							

		T w					
1	measured by:		X	Y	Z	A A	AB
2			on date:	5/11/92	at hour:	6	
3		1	 				
4	Water vapor r	Tessure at catu	ration from T				
5		pressure at satu	Tation Tom Ta	able 1 for super	rnate conditions		
6	Pwa	⊥ itervapor@sat =					
7	1 112	Tervapore/sar =		9 millibars @ T		€.	
8	 	<u> </u>	(Uncertainty:	2.5	millibars)	_	
9	therefore,	Due de la contraction					1
10		Preduced =		1 millibars			
11			(Uncertainty:	6.1	millibars)		
12		1344110000		<u>L</u>			
13	and then [Mo	I.Wt.H2O/Mol.W	t.Purge Gas]	/ [P(atmospher	e)/P(reduced) -	1] =	
14							
15	7.0.20	kg-H2O/kg-Gas					
 -	1,	0.0041	kg-H2O/kg-Ga	as)			T
16							
17	The Mass of w	ater which stay	s (+) in the ta	nk, or is remov	ed (-) from the	tank;	
18	<u> </u>					T	
19	0.0088		0.0123	=	-3.5364E-03	kg-H2O/kg-Gas	
20				(Uncertainty:		kg-H2O/kg-Gas)	
21						ng rizong dasy	
22	Assuming	the flow rate of	purge gas is	that of dry	AIR	then;	
23							<u></u>
24	Mass Flow Rate	of Gas =	320	x density (Tab	le 3)		
25			668	ka-Gas / hour	1		
26	(A 1% uncertainty	y of density exclu	ding the uncert	ainty of pressure	and temperature	values)	
27	(therefore, unce	ertainty of flow	rate due to d	ensity is:	9.2	kg-Gas/hour)	
28						ing Gasinoury	<u></u>
29	Rate of change	of water in the	tank is:				
30							
31	-3.5364E-03	x	668				
32			000			g-H2O / hour	
33				=		kg-H2O/period	
34				(period =	24	hours)	
35	Vol-to-hght =	35101	al./inch =	122227			
36		<u></u>	GIATION =	13286795	cm3/inch then		
	and using a Wat	er Density of	0.0070				
38			uncertainty:	g/cm3 at T =	25	<u>C</u>	
	(Uncertainty of wa	ter density due to	Support inty:	0.0067	g/cm3)	İ	
40	(Uncertainty of wa Waste height o	change-	-0.004	remperature onl	y, see Table 2)		
41	orgitt (manye_	-0.004	inch, unce	rtainty =	0.002	
42							
43							
44					[·	
45							
16							
17						I	

	AC	AD	AE	AF	AG		1
1	measured by:			5/11/92	at hour:	6 AH	AI
2	1			1 3711732	at 11001.	0	
3	Step 2: Deter	mine change in	height from co	ndensation at t	he condenser co		
4					T Condenser Co	JI EXII (·
5	Assumptions:						
6	1. The actua	I temperature of	the purge gas	is not measure	ed so it will be to	aken to	†
7	the condense	r coil exit temp	erature.				
8	2. When To	oil,inlet => Tcoil	oulet then the	purge gas has	passed through	the	
9	condenser wit	hout condensin	g any of the wa	ater vapor and	therefore no wa	ter is	 -
10	returned to the	e tank. On th	e other hand, s	when Tooil inte	et < Tooil, outlet	it	
11	will be assum	ed to have cond	lensed some of	the water vapo	or		-
12	3. The gas p	ressure at the c	oil exit is at atn	nospheric press	ure (this should	be a	
13	fair assumptio	n because pres	sure has a sec	ondary effect).			
14	4. The purge	gas and water	vapor is a non-	reacting mixture	3.		
15	5. That the w	ater vapor acts	as an ideal gas	s.			
16	6. The conde	nser exit tempe	erature is at the	dew point tem	perature (will be	e true	-
17	if condensing).		Ţ	(-
18	7. The rate of	purge-gas flow	is of dry gas o	only (the mass of	of water vapor is	LASS	
19	than 1% of the	purge-gas ma	ss).		Turor tapor (s		
20		al equilibrium e					ļ
21							ļ
22	If Tcoil, outlet	= T(purge gas)	= T(dew point) then			
23			,,	1			
24	Pwatervapor@	sat =	14 98	millibars @ T=	12	₹	····
25			(Uncertainty:	2.50	millibars)		
26			,		Timiloa(3)		ļ
27	Mass of water	which LEAVES	the condenser	with the purge	726 –		ļ
28		Vapor / Mass o			943 -		
29					<u> </u>		
30	(noto: At pands	nor.vvi.rurge Ga	asy[P(atmosphe	ere)/(HH-P(wate	er vapor@sat))	- 1] =	
31	Thore.At conde	nsor outlet:RH	= relative humi	dity = 1, i.e., co	ondensing cond	itions)	
32	0.0002	kg-H2O/kg-Gas					[<u>.</u> .
—	(Uncertainty:		l 1100# 0		ond,inlet > Tconc	l,outlet)	ļ
34	(Oncertainty.	0.0015	kg-H2O/kg-Gas	because R	H <> 100%)		<u> </u>
	Mass of water	which ENTERS	ho CONDENCE	70			-
36	Mass of water	Which LEAVES	the CONDENSE	R with the purge	gas =		<u> </u>
37	(from Step 1)	WINCH LEAVES	ine TANK with	the purge gas =	:		·
		of Wt Pusco C	ol / [D/=+==	here)/P(reduce			ļ
39	[14101.441.11207]	U.WI.Fulge Ga	is / [P(almosp	nere)/P(reduce	<u>a) - 1]</u>		
	Preduced =	10.01				 .	_ [
41	, reduced =		millibars		(from Step 1)		
42		(Uncertainty:	6.1	millibars)			
43		-					
44							
46							
47		100					
	l						

	AJ	AK	AL	084			
1		DUIGNAN		5/11/92	AN	AO	AP
				3711732	at hour:	6	
3	Step 2: Contir	nued					
4							
5	and then [Mo	J.Wt.H2O/Mol.V	Nt Purge Gael	/ (D/otmessle)	re)/P(reduced)	<u> </u>	
6			digo dasj	7 [F (aunosphe	re)/P(reduced)	<u>- 1] =</u>	
7	0,0123	kg-H2O/kg-Ga	 				
8			kg-H2O/kg-G		(from Step 1)	
9		0.0041	kg-nzO/kg-G	as)			
10	The Mass of w	ater which is a					
1	The Mass of w	WHICH IS C	ongensed and	returned to the	tank;		T
12							
13	0.0120	<u> </u>	0.009:	3 =	3.0443E-0	kg-H2O/kg-Gas	
14		<u> </u>		(Uncertainty:		kg-H2O/kg-Gas)	
1 5							
16	The state of the tall	id if this is a pi	ositive result, e	evaporation is r	not possible for	a gas)	
17				1	1	T	
18	The state of the s	olumetric flow	rate of purge	gas is that of o	ry gas then:		+
						 	
19	100011816	of Gas ≂	320	x density (Tai	ble 3)		
20	- 	=	676	kn-Gas / hour			
21	1 7 1 1 1 2 1 1 C 1 1 C 1 1 C 1	of density exclusive	uding the uncert	ainty of procesure	and temperature	L	
22	Amoratore, drice	ertainty of flow	rate due to d	ensity is:	9.3	kg-Gas/hour)	
23	1				-	kg-Gas/flour)	+
24	Rate of change	of water in the	tank is:		 		-
25					ļ		ļ
26	0.0030	х	676	=	0050		
27				=		g-H2O / hour	
28						kg-H2O/period	
29				(period =	24	hours)	
30	Val 4- 1-14				1		
31	Vol-to-hght =	3510	gal./inch =	13286795	cm3/inch then		
	Water Dravit						
33	Water Density =		0.9970	g/cm3 at T =	25	<u>€</u>	i
	41.	[(uncertainty:	0.0067	g/cm3)		·
34	(Uncertainty of wa	ter density due t	o uncertainty in	Temperature on	ly, see Table 2)		
35	Waste height o	hange=	0.004	inch, unce	ertainty =	0.001	
37							
38							
39							
40						; - !	
41							
42							
43						;	
44							
45				— — · —			
46							
47							
				<u>-</u>			

Γ	AQ	1 45	Т					
1	measured by:	AR	AS	AT	AU	AV	A۱	w
2	measured by.	DUIGNAN	on date:	5/11/92	at hour:	6		
3	Sten 3: Deter	mino the share		<u> </u>				
4	Salt C	ake and the Su	e in height due	to the transfer	of mass between	en the		
5	Sall C	are and the Su	pernate.	<u> </u>				
6		IS THERE ON	TOAKE					
7	*! 1011		TCAKE IN TANK		YES			
8	LIQU	T AND SOLID F	RESENT: MASS	TRANSFERIS	POSSIBLE*			
9	A							
1	Assumptions:							
10	1 atop, (some of the ass	umptions are c	onsidered poor	and can only b	e made		
11	Detter by obtain	ining more info	rmation as to ti	he solubility pro	perties for the	waste		
12	mixture.	ĺ				1		
13	1. The liquid i	s chemically sa	turated and in e	quilibrium with	the solid.			
	2. Interpolated	values of solu	bility from simil	lar mixtures wil	give represen	tative		
15	values of the t	rue mixture sol	ubility.			T		
16	3. Average te	mperatures are	uniform and co	onstant through	out the substa	nce.		
11/	4. The mass t	ransfer occurs	much faster tha	in the day's tim	e over which t	his		
[10	Isteb a carculation	on is carried of	ut. I					
19	5. The new de	ensity of the su	pernate, which	is determined a	fter the mass	transfer		
40	nas occurred.	is uniform throi	ughout the liqui	d.		1		
	The sub-steps							
22	1. Use the mola	ar concentration	s of NaOH and	NaNO3* to de	termine which	miyturo		
23	Isolubility relatio	nship is appror	oriate (i.e., mlxt	ures - 1 2 3 a	4 or 7 of which	h the	 -	
24	compositions a	re from Goodle	tt, DP-1135, Ju	ine 1968)	7, 0. 1 01 11/110	T the		
25								
26	2. Interpolate to	obtain one re	lationship for ea	ach compound				
27								
28	3. Interpolate to	obtain one re	lationship for th	ne tank miytura				
29			1	io tarik mixtare				
	4 Determine the	o omount of						
31	4. Determine the determining the	change in eat	ass exchanged	between solid a	ind liquid by			
32	stens: Above or	change in soil	ibility of the sur	pernate.	This is done in	two		
33	steps: Above ar	id below the sa	ut cake becaus	e of the temper	ature differenc	e		
	Substan 1: Date	rmina annual		:				
35	Substep 1: Dete	appropri	ate solubility m	ixtures (from T	able 4b).			
	For NaOH with I	14-1- 4						
37	TO NACH WILL			he mixtures to		1 & 4		
38			iving an interp	olation multiplie	r A of:	0.716	7	
-	For NaNO2 with	1.0			<u></u>			
40	For NaNO3 with		1.56 t	he mixtures to	use are:	only 4	1	
41		9	iving an interpo	olation multiplie	r Brof.	0.000		
42							1	
43								
44							1	1
45								
46							***	
47							†	

[AV						
-	1 measured by	AY	AZ	BA	BB	BC	BD
	2 Measured by	/: DUIGNA	W on date:	5/11/92	at hour:	6	
-	Step 3: Cor						†· · · ·
		ilinuea					1
		41. 4					† · · · · · - · · - · · - · · - · · · ·
-	Substep 2. F	or the two con	pounds obtain	the necessary	l solubility relation	ships	
۲	(obtain coeff	icients for the	equation wt% =	a0 + a1*T + a	2*T^2 from Tab	ole 5)	ļ
_7						1	<u> </u>
8	a0_NaOH =	57.91	1		a0_NaNO3 =	10.500	ļ
9	1	-0.104	8		a1_NaNO3 =	48.532	ļ
1	0 a2_NaOH =	0.003	7			0.2115	
1	1 (uncertainty:	3.0	4 wt%)	(uncertainty:	a2_NaNO3 =	0.0000	
1:	2 (uncertainties	do not include	effect of unce	rtainty of the ex	oncentration of t	wt%)	
1:	3		- Chiest of diloc	Trainly of the co	pricentration of I	NaOH and NaNO)3)
14	Substep 3: Ti	ne overall assur	med supernate	_l solubility relatio	- [
1!	5	1	Ted Superriate	Solublity relatio	n is:		
16	Solubility (v	/1%) -			<u> </u>		
17		-1	 				
1 8				4 'T (°C) +	0.00185	*T^2 (°C)	
19		4.89	wt%), not inc	luding uncertair	ity in T		
		 	<u> </u>				
21	Substep 4: De	termine the ma	iss exchange b	etween the solid	l I and liquid phas	es	
<u> </u>	(Doin following pa	ns assume that the	chemical make-up	of the supernate a	have and below the	salt cake	
22	supernate interiac	e is similar to allov	the use of the ab-	ove solubility relatio	nship.)		
23	<u> </u>	ł					
24	Part a: Chang	e due to the so	lubility change	of supernate ab	ove salt cake		
	oupernate and	ive me san cak	e -				
26	wt% on previo	us measureme	nt =	55.57			
27	wt% on currer	t measuremen	i =	55.71			
28				1200357883	1		
29			,	}	grams		
	thorofore the		(uncertainty:	145994267			ļ
31	therefore the c	nange in mass	of the upper s	upernate is:			
<u> </u>	d(mass) =						
33	u(mass) =	3899708	grams	(uncertainty:	676236	grams)	
	D					· · · · · · · · · · · · · · · · · · ·	
34	Part b: Change	due to the sol	ubility change o	of supernate wit	hin salt cake		
""	Supernate With	in the salt cake	! -				
36	wt% on previou	is measuremen	t =	56.32			
37	wt% on current	measurement	=	56.49			
38	Previous mass	of Supernate =		1572758069	orams +		
39			(uncertainty:	324500253	3.4	·	
40	therefore the ch	nange in mass	of the lower su	pernate is:			
41							
42	d(mass) =	5868242	orams	/uncertaint:::			
43			3.25	(uncertainty:	1212011 g	rams)	
44							
45							
46							
47			——————————————————————————————————————				
							.]

	BE	BF		Τ		,	
1	measured by:	<u> </u>	DG on date;	BH	BI	BJ	ВК
2	inducation by:	DOIGIVAIV	on date:	5/11/92	at hour:	6	
3	Step 3: Conti	inued					
4	3.0p 0: 00mm	inded .	<u> </u>				
5	therefore the	hange in mass	of the frame				
6		onange in mass	or the from pa	nsa&bis			
7	d(mass) =	0707050					
8	u(mass) =	9767950	grams	(uncertainty:	1888247	grams)	
9			 				
	Annanimatal			<u> </u>			
10	Approximately	densities of ind	ividual compou	inds in solid sta	ate are:		
	NaOH @ 20° =			g/cm3	(uncertainty ur	nknown)	
_	NaNO3 @ 20°0			g/cm3	(uncertainty ur	known)	
	NaNO2 @ 0°C	=	2.168	g/cm3	(uncertainty ur		
15		<u> </u>					
16	To determine t	he height of the	mass which w	vas either remo	ved or added to	the	
17	solid the densi	ty values listed :	above will be u	sed at other te	mneratures The	cmall	
10	neight change	will not be affe	cted significant	lly over the ten	nneratures of in	terest	
19	i.e., the therma	d expansion of t	wo compounds	may be repres	sented as:		ļ
20	<u></u> i						
21	dV/V)_NaNO2	= 1.038191e-4	+ 2.540877e	-7°T + 4.5276	48e-9*T^2 /°C		
22	(standard devia	ation = 2.441e-6	/°C); Range: -	-23.2°C to 126.	9°C and		-
23	dV/V)_NaNO3	= 1.200175e-4	+ 1.045949e-	8*T + 2.08634	46e-9*T^2 /°C		
24	(standard devia	ition = 1.707e-6	/°C); Range:	19.9°C to 126.9	9°C		
25	<u> </u>						
26	Example: at 20	°C dV/V_NaNO:	2 = 0.00011 re	presenting a 1	/100 % change		
27	density, which	is insignificant.	1	,	Too 70 change		ļ
28							ļ
29	Then from the t	ank chamistry o					
30	Then from the t	ank chemistry a	rio assuming tr	ne solid has a s	similar chemistry	:	[
31	Density of Salt	Cakaia					
32	Density of Salt	Cake is =	2.178	g/cm3			
	The change of	wasta lavet dec					
34	The change of v	Maste tevel ane:	sulety to an exc	change of mass	is:	<u> </u>	
	level change						
	level change o			-0.34 i	inch		į
	(uncertainty:	0.07 ir	nch)				
	level change of (uncertainty:			0.54 i	nch		
39	(uncertainty:	0.10 ir	ich)				-
	Total ab						
	Total change of			0.20 j	псф		
	(uncertainty:	0.12 ir	och)			-	[
42							
43							
44							
45							
46						ļ	
47							

	BL	BM	D14				
_	measured by:	DUIGNAN	on date:	BO	BP	BQ	BR
- 3	2	Doignati	on date:	5/11/92	at hour:	6	
	Step 4: Deter	mine the chang	e in height du	lo the aver-			
4	ı İ		in neight due	to the expans	sion of the Salt	Cake	
5	Assumptions:			 			
6	1. If sludge is	present, its volu	ume changes	due to tempor	aturo similat	<u> </u>	
7	or the salt cak	.e		1	1	to that	
8	2. Tank diame	ter is not affect	ed by the tem	Derature chan			
9		uniform tempe	rature.	Totaldie chang	je.	 	
1	0 4. Salt cake ex	cpands and con-	tracts freely				
	 5. The salt ca 	ke has a volumi	etric thermal e	Xpansion coeff	cient similar to		
	- fritti-type sait. (given in Buil. Hai	rcourt III Thai	mal Evacacia-	- 4 144 1 0 11		
	PINOPOLLINO, DE	O (*/U-5/5, I)A/	: 30 1070 i	A /4/1/1/4-1/1/19			
	- 1110 14140 13 10	o ander man to	r another simil	ar mixturo *D.	march 1		
<u> </u>	100% ander pur	e compounds va	alues [NaNO3	and NaNO21 ti	nerefore is uno	much	
	The assumed to	De 20%).					
17	6. (1/V)*dV/dT	is independent	of temperatur	e (the assume	d uncertainty i	<u> </u>	
1	Tassumption 5 S	noula envelope	changes that	occur to the e	xpansion coeffic	rient	
	with temperate	re).			T document	7	
20					 		
21	The man make	sheet the origin	al salt cake he	eight is:	203	inches	
22	From Step 3 the	e change in the	salt cake heig	ht		in ones	
23	due to the mass	exchange is:			-0.34	inches	
24						inches .	+
25					202.66	inches	
26				(uncertainty:		inches)	
	Previous salt ca			29			
28	Current salt cak	e temperature =	=	30	°C		
29	Therefore, dT =			1	C :		
30							
31	From assumption	n 2. then dV/V	= dh/h and fro	m assumption	5.		
32						Orania de la composição	ļ
33	dh/h =	1.02E-04 /	°C				
34							
35	and for a	1 °C	change dh/h	=	1.02E-04		
36			(uncertainty:	2.04E-05	<u></u>	
37							
38	the change in I	neight of the s	alt cake is:		0.021	inches	
39			(uncertainty:	0.005		
40						3	+
41			T				
43							t
44							
4 4							
46							
47							
لــــــــــــــــــــــــــــــــــــــ							

1 measured by: DUIGNAN On date: 5/11/92 at hour: 6		BS	BT	BU	DV.	T 5		
3 Step 5a: Determine the change in height due to the expansion/contraction 4 of the Supernate above the Salt Cake	1							BY
4	2			7, 0,10	3711732	at nour:	 	
4	3	Step 5a: De	termine the cha	inge in height	due to the exna	ansion/contraction	<u> </u>	+
Assumptions:		of th	e Supernate ab	ove the Salt Ca	ake	- Island Contraction	<u> </u>	
1. Tank diameter is not affected by the temperature change.	5							
8	6	Assumptions:						
9 2. Liquid is at a uniform supernate temperature. 10 3. Waste consists of NaNO3, NaNO2, and NaOH only. 11 4. NaNO3 and NaNO2 liquids have the same density-temperature response. 12 5. Density values in Tables 5 & 6 are in error by 5%.	7						 	
9 2. Liquid is at a uniform supernate temperature. 10 3. Waste consists of NaNO3, NaNO2, and NaOH only. 11 4. NaNO3 and NaNO2 liquids have the same density-temperature response. 12 5. Density values in Tables 5 & 6 are in error by 5%.	8	1. Tank diam	eter is not affer	cted by the ter	nperature chance			
10 3. Waste consists of NaNO3, NaNO2, and NaOH only.	9_	2. Liquid is a	t a uniform sup	ernate tempera	ture.			
11 4. NaNO3 and NaNO2 liquids have the same density-temperature response. 12 5. Density values in Tables 5 & 6 are in error by 5%.	10	Waste con	sists of NaNO3,	NaNO2, and N	laOH only.		 	
13		4. NaNO3 an	d NaNO2 liquid	s have the san	ne density-temp	erature response	<u> </u>	
14 From inputs the supernate height above saltcake is: 66.4 inches 15 From Step 3 the change in the supernate height	12	Density va	lues in Tables 9	& 6 are in err	or by 5%.			
15 From Step 3 the change in the supernate height 16 due to the mass exchange is:	13	<u> </u>	}				 	
15 From Step 3 the change in the supernate height	14	From inputs the	ne supernate he	ight above sal	tcake is:	66.4	inches	-
18 Total liquid height above supernate is: 66.94 inches 19	15	From Step 3 t	he change in th	ne supernate h	eight			
18 Total liquid height above supernate is:		due to the ma	ss exchange is:			0.54	inches	<u> </u>
19			<u></u>				<u> </u>	
Previous supernate temperature = 24 °C		Lotal liquid he	ight above sup	ernate is:		66,94	inches	<u> </u>
21 Current supernate temperature = 25 C 22 Avg. temperature to determine thermal expansion = 24.5 C 23					(uncertainty:	0.2	inches)	f
22 Avg. temperature to determine thermal expansion = 24.5 °C 23					24	C		†
24 The combined weight percentage of NaNO3 and NaNO2 = 14.31 wt % 25 The weight percentage of NaOH = 15.67 wt % 26					25	C		
The combined weight percentage of NaNO3 and NaNO2 = 14.31 wt % 15.67 wt %	22	Avg. temperat	ure to determin	e thermal expa	ansion =	24.5	C	
25 The weight percentage of NaOH = 15.67 km		The section t	l					
26	24	The combined	weight percenta	age of NaNO3	and NaNO2 =		14.31 wt %	
27 (NOTE: uncertainty of tabular values is not known)		the weight pe	rcentage of Nac)H =	ļ		15.67 wt %	
Interpolation Work Box to determine		/NOTE:		l				
29 d(density)/dT for NaNO3 and NaNO2 d(density)/dT for NaOH 30 at the variable given above from Table 6 at the variable given above from Table 7 31 beginning row in Table 6 is: 6 32 beginning col in Table 6 is: 2 33 (unc. of tabular values assumed: 1%) (unc. of tabular values assumed: 1%) 34 Temperature, °C Temperature, °C 35 wt% 20 40 wt% 20 40 36 12.00 wt % 1.0819 1.0724 12.00 wt % 1.1309 1.121 37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 38 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = therefore at T= and wt% = 41 24.5 14.31 24.5 15.67 43 density = 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	20	Internalistics M	amy of tabular	values is not l		Ĺ <u></u>		
30 at the variable given above from Table 6 at the variable given above from Table 7 31 beginning row in Table 6 is: 6 beginning row in Table 7 is: 6 32 beginning col in Table 6 is: 2 beginning col in Table 7 is: 3 33 (unc. of tabular values assumed: 1%) (unc. of tabular values assumed: 1%) 34 Temperature, °C Temperature, °C 35 wt% 20 40 wt% 20 40 36 12.00 wt % 1.0819 1.0724 12.00 wt % 1.1309 1.121 37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 38 39 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = therefore at T= and wt% = 41 2.00 wt w 1.24.5 15.67					Interpolation V	Vork Box to det	ermine	
31 beginning row in Table 6 is: 6 beginning row in Table 7 is: 6 32 beginning col in Table 6 is: 2 beginning col in Table 7 is: 3 33 (unc. of tabular values assumed: 1%) Temperature, °C Temperature, °C 35 wt% 20 40 wt% 20 40 36 12.00 wt % 1.0819 1.0724 12.00 wt % 1.1309 1.121 37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 39 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = 41 24.5 14.31 24.5 15.67 42 24.5 14.31 24.5 15.67					d(density)/dT	for NaOH		
31 beginning row in Table 6 is: 6 beginning row in Table 7 is: 6	30	at the variable	given above fro	m Table 6	at the variable	given above fro	m Table 7	
33 (unc. of tabular values assumed: 1%) (unc. of tabular values assumed: 1%) 34					beginning row	in Table 7 is:		
34 Temperature, °C Temperature, °C 35 wt% 20 40 wt% 20 40 36 12.00 wt % 1.0819 1.0724 12.00 wt % 1.1309 1.121 37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 38 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = 41 24.5 14.31 24.5 15.67 42 43 density = 1.0000 kt % 1.0000 kt % 1.567				2				
35 wt% 20 40 wt% 20 40 36 12.00 wt % 1.0819 1.0724 12.00 wt % 1.1309 1.121 37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 38 39 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = 41 24.5 14.31 24.5 15.67		unc. of tabular			(unc. of tabula	r values assume	ed: 1%)	
36 12.00 wt % 1.0819 1.0724 12.00 wt % 1.1309 1.121 37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 38 39 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = 41 24.5 14.31 24.5 15.67			T	C		Temperature, °0	C	
37 16.00 wt % 1.1118 1.1013 16.00 wt % 1.1751 1.1645 38 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = 41 24.5 14.31 24.5 15.67	_				wt%	20	40	
38						1.1309	1.121	
39 14.31 wt % 1.06463179 1.055709 15.67 wt % 1.09034819 1.081090 40 therefore at T= and wt% = therefore at T= and wt% = 41 24.5 14.31 24.5 15.67		16.00 Wt %	1.1118	1.1013	16.00 wt %	1.1751	1.1645	
40 therefore at T = and wt% = therefore at T = and wt% = 41 24.5 14.31 24.5 15.67		1/ 21 0/	1.004001==					-
41 24.5 14.31 24.5 15.67 42 43 density - 1.0000 is 8						1.09034819	1.081090	~ -
42 24.5 15.67		inere			there			
4.3 Idencity - 1 access to a			24.5	14.31		24.5	15.67	
		lensity -	1.0000	-12				
43 density = 1.0626 g/cm3 density = 1.0883 g/cm3		ichaity =	1.0626	y/cm3	density =	1.0883	g/cm3	
45								
46								
47							···	

	BZ	CA	СВ	T			
1	measured by:	DUIGNAN	on date:	<u>C</u>	CD	CE	CF CF
2		SOIGIVAIV	on date:	5/11/92	at hour:	6	
3	Step 5a: Con	tinued			 	<u></u>	
4	1	1		 	<u> </u>		
5	and - (1/V)*(c	JV/dT) =			<u> </u>		
6	1	7.7.7.7		and - (1/V)*(c	IV/dT) =		
7	4.1983E-04	100		ļ. <u>.</u>		1	
8	7.13032-04	/°C unc =	2.8176E-05	4.2535E-04	/°C unc =	9.3032E-0	6
9	Based on the						
10	Dased Oil the	molar percentag	e then:				
	NaOH =					 	
	NaNO3 & NaNo		52.3%				†
13	INANOS & NANO	J2 =	47.7%				
	45						
15	therefore -(1/d	iens)"(ddens/dT	$) = (1/V)^*(dV)$	//dT) =	4.2271E-04	/°C	
_						<u> </u>	+
16	and for dT =	1 9	C then	dV/V =	4.2271E-04		
17	<u> </u>			(uncertainty:	4.0709E-05	1	
18	From assumption	on 1: dV/V = d	n/h therefore,				+
19							
20							
21	the change in	height of the	supernate is	:	0.028	inches	
22				(uncertainty:		inches)	
23				(0.003	inches	
24							<u> </u>
25					·		
26							
27							<u> </u>
28							
29							
30							
31							
32							
33							····
34							
35				_			
36						*	
						····· · · · •	
38						-+	
39		70			* •	į	
40						·	
41							
42					·	1	
43						-	
44					··- ·	.‡	
45						1	
46							
47		-					

	Œ	СН	a	CJ	1 200		
1	measured by			5/11/92	CK at hours	CL	GM
2			- un date:	3/11/92	at hour:	6	
3	Step 5b: De	termine the cha	inge in height	due to the eyn:	l_ ansion/contractio		
4	of the	ne Supernate wi	thin the Salt Ca	ake	ansionicontractio	<u> </u>	
5					 	 	-
6	Assumptions:						
7	1. Tank diam	eter is not affer	cted by the ter	mperature chang		 	
8	2. Liquid is at	a uniform Salt	Cake tempera	turo	ye.		
9	3. Waste con	sists of NaNO3,	NaNO2 and N	NaOH only			
10	4. NaNO3 ar	id NaNO2 liquid	s have the san	ne density town	erature respons	<u> </u>	
11	5. Density va	lues in Tables !	& 6 are in err	or by 59/	erature respons	e.	
12	6. Chemical	make-up of supe	ernate above a	nd within salt ca	l l		
13			The state of the s	ild Within Sait Ca	T similar		ļ
14	From inputs t	he supernate "h	Light "within s	alt cake in	 	 	
15	From Step 3	he change in th	e supernate h	einht	- 87	inches	
16	due to the ma	ss exchange is:			+		
17		T			-0.34	inches	
18	Total liquid *e	quivalent heigh	l" is:	 	00.00		
19			<u> </u>	(uncertainty:		inches	<u> </u>
20	Previous salt	ake temperatur	·e =	+	14.5	inches)	
21	Current salt c	ake temperature) =		96		
22	Avg. temperat	ure to determin	e thermal expa	ansion -			
23			l morrial expe	1131011 =	29.5	 • 	
24	The combined	weight percenta	age of NaNO3	And NaNO2 -		1101 10	
25	The weight pe	rcentage of NaC	OH =	1402 =	 	14.31 wt %	
26					 	15.67 wt %	
27	(NOTE: uncert	ainty of tabular	values is not k	(DOWD)			
28	Interpolation V	ork Box to det	ermine		Manie Danie I. d.		
29	d(density)/dT f			1 .	Vork Box to det	ermine	
				d(density)/dT			
31	at the variable beginning row	given above iro		at the variable	given above fro	m Table 7	
	beginning col in		6	beginning row	in Table 7 is:	6	
33		values assume	2	beginning col i	n Table 7 is:	3	
34	(dilo. or tabular	Temperature, %		(unc. of tabula	values assume		
35	w1%				Temperature, °c	2	
36	12.00 wt %	1.0819	40	wt%	20	4 0	
37	16.00 wt %	1,1118	1.0724	12.00 wt %	1.1309	1.121	
38	- 10100 111 70	7,7118	1,1013	16.00 wt %	1.1751	1.1645	
39	14.31 wt %	1.06463179	1 055700	15.07			
40	there	etore at T= and	1.055709		1.09034819	1.081090	
41		29.5		there	efore at T= and		}
42			14.31		29.5	15.67	
	density =	1.0604	1/cm3	donaitu			
44		1.0004	groms	density =	1.0860	g/cm3	
45							
46							
47							
			l				

1 measured by: DUIGNAN on date: 5/11/92 at hour. 6		CN	co	СР	- α	T	· · · · · · · · · · · · · · · · · · ·	
3 Step 5: Continued 4 4 5 and - (1/V)*(dWdT) = and - (1/V)*(dWdT) = 7 4.2071E-04 /**C unc = 2.8226E-05 4.2625E-04 /**C unc = 9.2941E-06 8 9 Based on the molar percentage then: 10 11 NaOH = 52.3% 12 NaN03 & NaN02 = 47.7% 13 14 therefore -(1/dens)*(ddens/dT) = (1/V)*(dW/dT) = 4.2361E-04 /**C 15 16 and for dT = 1 1**C then dW/V = 4.2361E-04 /**C 17 18 From assumption 1: dW/V = dh/h therefore, 19 20 (uncertainty: 4.0782E-05) 19 20 (uncertainty: 0.007 inches) 21 the change in height of the supernate is: 0.037 inches 22 23 24 25 26 Total height change from step 5a & step 5b: 0.065 27 28 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 45	1	measured by:				OR .	CS	CT
A 5 and - (1/V)'(dV/dT) = and - (1/V)'(dV/dT) =	2			on date.	3/11/92	at hour:		
A	3	Step 5: Conti	nued			<u> </u>		
6	4							
6	5	and - (1/V)*(d	(Tb/VI				<u> </u>	
8 9 Based on the molar percentage then: 10 11 NaOH = 52.3%	6				and - (1/V)-(d	IV/d1) =		
8 9 Based on the molar percentage then: 10 11 NaOH = 52.3%	7	4 2071F-04	/°C una	0.00005.05	 			
9 Based on the molar percentage then: 10 11 NaOH =	<u> </u>	1.20.12.04	/ C unc =	2.8226E-05	4.2625E-04	/°C unc =	9.2941E-0	5
10	<u> </u>	Based on the	70/05 7000-1					
11 NaOH = 52.3% 12 NaNO3 & NaNO2 = 47.7%		Jacob on the !	notal percentag	e tnen:				
12 NaNO3 & NaNO2 = 47.7%		NaOH -						
14 therefore -{1/dens}*(ddens/dT) = (1/V)*(dV/dT) = 4.2361E-04 PC 15								·
14 therefore -{1/dens}*(ddens/dT) = (1/V)*(dV/dT) = 4.2361E-04 /*C 15		ITANOS & IVAIVO	J2 =	47.7%				
16 and for dT =		thorofore (4/4						
16 and for dT =	1 5	Imeratore -(1/g	ens) (adens/dT	$) = (1/V)^*(dV)$	/dT) =	4.2361E-04	/°C	
17		and for dT						
18 From assumption 1: dV/V = dh/h therefore, 19 20		and for al =	1	°C then		4.2361E-04	 	
19 20 21 the change in height of the supernate is:					(uncertainty:	4.0782E-05)	
20 21 the change in height of the supernate is:		From assumption	$\frac{\text{on 1: dV/V}}{\text{on 1: dV/V}} = \frac{\text{div}}{\text{on 1: dV/V}}$	n/h therefore,			 	
21 the change in height of the supernate is:								
22								
Company Comp	21	the change in	height of the	supernate is		0.037	inches	
24					(uncertainty:			
25 Total height change from step 5a & step 5b:							11.01.03)	
26 Total height change from step 5a & step 5b: 0.065 27								L
28								
28	26	Total height cl	nange from ste	ep 5a & step	5b:	0.065		
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	2/						inches)	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	28					0.010	menesj	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	29							
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	30							
33 34 35 36 37 38 39 40 41 42 43 44 45 46	31							
34 35 36 37 38 39 40 41 42 43 44 45 46	32							
35 36 37 38 39 40 41 42 43 44 45 46	33							
35 36 37 38 39 40 41 42 43 44 45 46	34							
36 37 38 39 40 41 42 43 44 45 46	35							
37 38 39 40 41 42 43 44 45 46								
39 40 41 42 43 44 45 46			- 					
39 40 41 42 43 44 45 46	38							
40 41 42 43 44 45 46							1	
41 42 43 44 45 46								
42 43 44 45 46					J		ļ	
43 44 45 46							į	
44 45 46								
45 46							İ	
46						1		
							*	
	47		———— <u>—</u>					
47	4/1			1			j	

	αυ	cv	CW	СХ	T		
1	measured by:	DUIGNAN	on date:	5/11/92	at hour:	6	DA
2				3711732	at nour:	6	
3	Step 6: Deter	mine the change	in height due	to the change	in Carbon Stool	Macto	
4	Tank Volume.			J	iii Garbon Steel	vasie	
5					 	 	
6	Assumptions:			<u> </u>	<u> </u>	 	-+
7				-			·
8	1. The entire	tank is made of	carbon steel		-		
9	2. The therma	al coefficient of	expansion is a	Constant with to			
10	3. The linear	thermal coefficier	nt of expansion	onstant with te	emperature.		<u> </u>
11	(valid: 10°C	C < T < 100°C).	in or expansion	I III Table 6 IS	valid.		
12		nal coefficient of	expansion is	twice the lines	*		
13	5. The entire	tank expands an	d contracts fro	twice the linea	r coefficient.		
14	6. The measu	red annular tem	neratures are	constant and a			<u> </u>
15		1	peratures are	constant and t	niiorm througho	ut the tank w	all.
16	From the input	sheet the origin.	al waste level	ie:			
17			ar waste level	15.	356.4	inches	ļ <u>-</u>
18	Previous tank v	wali temperature					
19	Current tank w	all temperature :		27			
20	Average wall te	emperature -		28			
21	Temperature ch			27.5			
22	1	lange		1	€		
23	From assumption	one 3 and 4 the	00 0 11 (14)	. IT. (114			
24	Trom abbampan	ons 3 and 4, the	en 2 x (1/1) di/	d = (1/Area)	dArea/dT:		
25	(1/A)dA/dT=	2.19E-05/	00				
26	(****,*********************************	2.132-037					
27							
28	and for a	1 00	0 11 111			····	
	and for a	1 0	C change dA/	<u>A =</u>	2.19E-05		
29				uncertainty:	4.39E-06)		
30							+
31	For the contents	s in the tank if the	he volume rem	nains constant	then the waste		
32	level changes w	rith tank area the	erefore: c	dA/A = dh/h			T
33							1
34		d	h/h =	2.19E-05			
35							i
36	ine change in	height of the s			-0.008 ii	nches	1
38			(uncertainty:	0.002 ir	nches)	† · · · · ·
39							
40					•		
41							
42							-
43						-	j · · ·
44							
45							
46							
47							

	A	В	Тс	7			·
41	Table 1: Wat		Saturation Co	D	E	F	G
4 9	Least-sq. fit: (Press = wv0 +	WAVI v Tomo	OC NO.	<u> </u>		
5 (0.0	to 50°C	T remp.(C) +, MPa)	x 10000, millib:	ars	
51		cert. = 2xstd d	PV - 2% FS)	(Curata Fit	0 to 110°C		1
5 2	wv0_1	6.124E-04		wv0 h	Uncert. = 2xstd. 1.009E-0		
5 3	wv1_i	4.273E-05	;	wv1_h			
5 4	wv2_I	1.695E-06		wv2_h	-5.700E-0		
5 5	wv3_I	1.202E-08		wv3_h	1.699E-0		
56	wv4_I	6.177E-10		wv4 h	-1.656E-0		<u>i</u>
57	corr. coef.	0.99999990		2005	1.439E-0		
58	*Least-square fitting	of data from Rev	nolds W.C. and	H C Posting "C	1.0000000	01	
60	Least-sq. fit: D	ensity = w 0	+ w 1x/T °C)		10	<u> </u>	<u> </u>
				1 W_EX(1, C)	$\frac{2 + W_3x(1, C)}{1}$	^3, g/cm3	<u> </u>
62	Pressure: 1 atn	nosphere					
63	(Curve Fit Unco	ertainty = 2xsto	d.dev. = 0.001	%FS\			_ŧ
64	w_0	1.00E+00	0.001	T -			
65	w_1			Te of Corrola	tion: 5°C to 38		<u> </u>
	w_2	-7.53E-06	Tana Han	Je or correta	111011: 5°C 10 38	J	
67	w_3	3.61E-08		Density =	0.0070450		<u> </u>
68	corr. coef.	0.999999		at Temp. =	0.9970456		_ <u></u>
69	Van der Leeden	F Troise E L			_12	5 ℃	-
70	'van der Leeden, Table 3a: Den	oitu of Air	nd D.K. Todd, 1	he Water Encyc	lopedia, 2nd ed.,	1990,(p. 774)	
	Assume Ideal Ga						ļ
72	(Uncertainty ass	umed to be 19	% excluding th	e uncertainty /	of P and T)	 	-
73	Density = Mol.W	t. x Pressure/	R x Temperate	uro)	Ji and 1)	 	1
74	Molecular Weigh	nt of Air =		g/gmole			·
75	Universal Gas C	onstant =		J/gmoleK		ļ	<u> </u>
	Atmospheric Pre		1021.2		102120	ļ	1
77	Atmospheric Te	mperature =	16.6		102120	- -	1
78	Cond.Exit Tempo	erature =	13	=	289.75		1
79	therefore, Densi	tv =	1.2280E-03	= = =	286.15		
80	therefore, Densi	tv =	1.2435E-03	g/cm3 at	289.75	K	1
81	Table 3b: Dens	ity of Nitroge	- 1.2433L-03	y/cms at	286.15	K	·
82	Assume Ideal Ga:	s					l (-
83	(Uncertainty assu	umed to be 1%	excluding the	uncortainte	<u> </u>		
84	Density = Mol.W	t. x Pressure///	3 x Temperatu	runcertainty o	Pand I)		
85	Molecular Weigh	t of Air =	28.02	g/gmole			L
86	Universal Gas Co	nstant =	8 31/3	g/ginole J/gmoleK	 		
87	Atmospheric Pres	ssure =	1021.2	orginolek	 		
88	Atmospheric Ten	nperature =	16.6	=	102120		
89	Cond.Exit Tempe	rature =	13	- · =		·	
90 t	herefore, Densit	v = -	1.1878E-03	= = = = = = = = = = = = = = = = = = =	286.15		
9 1 t	herefore, Densit	v =	1.2027E-03			K	
	1 = 3.101	4	1.20276-03	groins at	286.15	K	· · · · · · · · · · · · · · · · · · ·

	Н	ı	J	К	<u> </u>	T N T	
4 8	B Table 4b:	Supernatant N	fixture** 1 at	25°C (Molarity)	 	<u> </u>	N
4 9	9			- Combinating	<u>'</u>		
5 (Compour	nd mixture #	1 mixture #	2 mixture #3	mixture #4		
5 1	Na NC	0.6		- mixture #c	maxidie #4	mixture #71	
52	110110	03 1.4	0 3.4	0 5.03	2.18	6.00	W . W
53	Na O	H 2.3	0 0.3			——————————————————————————————————————	
5 4	110700	2 2.3				1.00	
5.5			0.3				
56		4	0.0	0.09	0.00	0.30	
57	*NaNO2 doe:	s not have suffic	cient data to be	used as an indi	cotor.	0.10	
58	**mixtures 5	and 6 did not l	nave sufficient i	nformation to de	etermine solubili	llan i	
59			1	1	1 "1	ues	
60	Table 4b: D	etermine whic	h mixture rep	resentation to	use		
61	Number for n	nixtures 1 & 2 c	iffer from Table	4a hecause	use		
62				Tu because			
63			** Increasing	Salt Content **		——— <u>—</u>	· · · · · · · · · · · · · · · · · · ·
64			NaOH	T CONTROLL	NaNO3		· · · · · · · · · · · · · · · · · · ·
65		Molarity		Molarity			
66		0.59			Mixture #	;	
67		1	 		4		
68		2.52			1		
69		7			3		
		4.43	ļ ·	6	7	1	
70	 	7.6	4	6.64	2		
			<u> </u>				· · ·
72	Table 5a: So	lubility for W	aste Mixture#1	(see Table 4	for contents)	1	
74	Curso 6440						
75	Curve III: Wt%	= a0+a1*T+a	2*T^2				
76	- 0	_				:	
		61.6290324		MIXTURE #	1	Į.	
77	a1	-0.23020301					
78	a2	0.00515966					
79	corr. coeff.	0.99623104					
80						····	
81	T,ºC	g/cc	wt%	Predied wt%	wt% - pred.		
82	20.00	1.57	59.00	59.10	0.09		
83	48.10	1.62	62.50	62.50	-0.01	1	·
84	60.00	1.65	66.40	66.40	-0.01	1	
85	66.70	1.67	70.30	69.20	-1.07	·.	
86	78.00	1.70	74.10	75.10	0.96		
87	83.80	1.74	77.80	78.60	0.77	- 1	
88	89.00	1.76	81.50	82.00	0.51	. 1	
89	91.90	1.78	85.30	84.00	-1.25		
90		standard devia				· i	
91				td. dev. x 2 =	0.8		
	·			stu. dev. x Z =	1.6		

	0	Р					
4		Olubility for 14	Q	<u> </u>	s	T	U
4	9	olubility for W	aste Mixture#	2(see Table 4	for content	s)	1
5	O Curve fit: wt9	6 - a0+a1*T	 				
5	1	0 - 00741 1		 			1
5:	2 a0	48.9781098	,	MINTER			
	3 a 1	0.29534586		MIXTURE	#2		
54	l a2	0.29334380	<u> </u>				!
5 5		0.99553027		 			1
56		1.00000027			<u> </u>		7
57	T,°C	g/cc	wt%	D- 11 1 10			
58	26.70						
59		1.40	31.00				
60	67.10		00.00		1		
61		1.50	74.00	74.00			i
62		1.52	78.00	79.90			
63		1.56	83.00	81.80			
64	126.20		87.00	86.30			
65		standard devia	tion from the ci	irve -			
66				std. dev. x 2 =	1.07		_
67			,		2.14		+
68	Table 5c: Sol	ubility for Wa	ste Mixture#3	see Table 4	for contents	 	
69		İ			io. coments)		
70	Curve fit: wt%	= a0+a1*T					<u> </u>
71							
72	a0	34.8210958		MIXTURE #	·		
73	a1	0.32776956		MIXTORE #			<u>.i.</u> 1
74	a2	0					
75	corr. coeff.	0.97788875			- -		
76			-				1
77	T,°C						
78	40.00	g/cc	wt%	Pred'ed wt%	wt% - pred.		+··
79	60.00	1.42	47.00	47.90	0.93		T
80	65.70	1.46	52.00	54.50	2.49		Ţ
B 1	90.00	1.50	59.00	56.40	-2.64	-	
8 2	97.10	1.54	63.00	64.30	1.32		
3 3	104.30	1.54	68.00 72.00	66.60	1.35		1
34	138.60	1.65	78.00	69.00	-2.99		T" -
3 5		tandard deviation	on from the our	80.20	2.25		
36				ve = d. dev. x 2 =	2.3		
37				u. uev. x 2 =	4.6		
8					——— <u> </u>		
9							
0							
1							
							‡

	V	W	Х				
48	Table 5d: So	lubility for W	aste Mixturo#	Mega Table 4	Z 2	A A	AB
49			T THE THE TENT	4/see Table 4	Tor contents	-	
50	Curve fit: wt%	= a0+a1*T		·			
5 1					 		
52	a0	48.5321135		MIXTURE	#4		T:
53	a1	0.21152422					
54	a2	0		 	<u> </u>		
55	corr. coeff.	0.94166942	· · · · · · · · · · · · · · · · · · ·			 	
56						 	
57	Τ,•℃	g/cc	wt%	Pred'ed wt%	wt% - pred		<u> </u>
58	51.00	1.50	58.00	59.30			
59	87.10	1.59	64.00				
60	83.80	1.62	71.00				···
61	155.70	1.68	81.00	81.50	0.47		-j
62		standard deviat	tion from the co	urve =	3.33		1
63				std. dev. x 2 =	6.66		-
64						T	<u> </u>
65	Table 5e; Sol	ubility for Wa	ste Mixture#7	(see Table 4	for contents)		
66	L i	ľ					· j · · · · · · · · · · · · · · · · · ·
	Curve fit: wt%	= a0+a1*T					<u> </u>
68							1
69		45.45668		MIXTURE #	ŧ7		1
70		0.12993107					i
71	a2	0					1
	corr. coeff.	0.9742925	ļ				1
73							· · · · · · · · · · · · · · · · · · ·
74	T,°C	g/cc	wt%	Pred'ed wt%	wt% - pred.		i
75	22.60	1.33	47.00	48.40	1.39	<u> </u>	
76	43.50	1.45	53.00	51.10	-1.89		1
77	100.00	1.45	58.00	58.40	0.45		
78	120.00	1.49	61.00	61.00	0.05		1
79		standard deviati	on from the cu	rve =	1.38		·
80			s	td. dev. x 2 =	2.76		
81							1
83							
84							
85							
86							
87							1
88							
89	- +						
90							
91							
	-						

	AC	AD	AE	AF	AG			
48	Table 6: Den	sity of NaNO3	(and assumed	for NaNO21*	AG	AH	AI	LA
7.7			1	- i i i i i i i i i i i i i i i i i i i				
	wt %	Temperature (°C)					
51		0	20	40	60			
52	0.00 wt %	0.9999	0.9982	0.9922		80	100	
53	1.00 wt %		1.0049		0.9832	0.9718	0.9583	
54	2.00 wt %		1.0049	0.9986	0.9894	0.9779	0.9644	
55	4.00 wt %	1.0290	1.0254	1.0050	0.9956	0.9840	0.9704	
56	8.00 wt %	1.0587	1.0532	1.0180	1.0082	0.9964	0.9826	
57	12.00 wt %	1.0891	1.0819	1.0724	1.0340	1.0218	1.0078	
58	16.00 wt %	1.1203	1.1118	1.1013	1.0609	1.0481	1.03,40	
59	20.00 wt %	1.1526	1.1429	1.1314	1.0892	1.0757	1.0614	
60	24.00 wt %	1.1860	1.1752	1.1629	1.1187	1.1048	1.0901	
61	28.00 wt %	1.2204	1.2085	1.1955	1.1496	1.1351	1.1200	
62	30.00 wt %	1.2380	1.2256	1.2122	1.1816	1.1667	1.1513	
53	35.00 wt %	1.2834	1.2701	1.2560	1.1980	1.1830	1.1674	
54	40.00 wt %	1.3316	1.3175	1.3027	1.2413	1.2258	1.2100	
55	45.00 wt %		1 2602	1 05	1.2875	1.2715	1.2555	
6	source: Perry's	Chemical Engi	neers Handbool	C 6th Edition	1.3371 1984, (pp.3-84,3	1.3206	1.3044	
				-, our Edition,	1904, (pp.3-84,3	-85)		
8 .	Table 7: Dens	ty of NaOH*					- -	
9	ĺ		-					
0 \	wt. %	Temperature					j	
1		0 C	15.0					
2	0.00 wt %		15 C	20 C	40 C	60 C	80 C	100 (
3		0.9999	0.9991	0.9982	0.9922	0.9832	0.9718	
4	1.00 wt %	1.0124	1.0107	1.0095	1.0033	0.9941		0.958
5	2.00 wt %	1.0244	1.0220	1.0207	1.0139	1.0045	0.9824	0.969
_	4.00 wt %	1.0482	1.0444	1.0428	1.0352	1.0254	0.9929	0.979
6	8.00 wt %	1.0943	1.0889	1.0869			1.0139	1.0009
7	12.00 wt %	1.1399	1.1333		1.0780	1.0676	1.0560	1.0432
8	16.00 wt %	1.1849	1.1776	1.1309	1.1210	1.1101	1.09,83	1.0855
		1.2296	1.2218	1.1751	1.1645	1.1531	1.1408	1.1277
9	20.00 wt %	1,42901						
9	24.00 wt %			1.2191	1.2079	1.1960	1.1833	1.1700
	20.00 wt % 24.00 wt % 28.00 wt %	1.2741	1.2658	1.2629	1.2512	1.2388	1.1833	
0	24.00 wt % 28.00 wt % 32.00 wt %		1.2658 1.3094	1.2629 1.3064	1.2512	1.2388 1.2814		1.2124
0 1 2 3	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt %	1.2741 1.3182 1.3614	1.2658 1.3094 1.3520	1.2629 1.3064 1.3490	1.2512 1.2942 1.3362	1.2388 1.2814 1.3232	1.2259	1.2124 1.2546
0 1 2 3 4	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt %	1.2741	1.2658 1.3094 1.3520 1.3933	1.2629 1.3064 1.3490 1.3900	1.2512 1.2942 1.3362 1.3768	1.2388 1.2814 1.3232 1.3634	1.2259 1.2682	1.2124 1.2546 1.2960
0 1 2 3 4 5	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt % 44.00 wt %	1.2741 1.3182 1.3614 1.4030 1.4435	1.2658 1.3094 1.3520 1.3933 1.4334	1.2629 1.3064 1.3490 1.3900 1.4300	1.2512 1.2942 1.3362 1.3768 1.4164	1.2388 1.2814 1.3232 1.3634 1.4027	1.2259 1.2682 1.3097	1.2124 1.2546 1.2960 1.3360
0 1 2 3 4 5	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt % 44.00 wt % 48.00 wt %	1.2741 1.3182 1.3614 1.4030 1.4435 1.4825	1.2658 1.3094 1.3520 1.3933 1.4334 1.4720	1.2629 1.3064 1.3490 1.3900 1.4300 1.4685	1.2512 1.2942 1.3362 1.3768 1.4164 1.4545	1.2388 1.2814 1.3232 1.3634 1.4027	1.2259 1.2682 1.3097 1.3498	1.2124 1.2546 1.2960 1.3360 1.3750
0 1 2 3 3 4 5 5 6 7	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt % 44.00 wt % 48.00 wt % 50.00 wt %	1.2741 1.3182 1.3614 1.4030 1.4435 1.4825 1.5210	1.2658 1.3094 1.3520 1.3933 1.4334 1.4720 1.5102	1.2629 1.3064 1.3490 1.3900 1.4300 1.4685 1.5065	1.2512 1.2942 1.3362 1.3768 1.4164 1.4545 1.4922	1.2388 1.2814 1.3232 1.3634 1.4027 1.4405 1.4781	1.2259 1.2682 1.3097 1.3498 1.3889	1.2124 1.2546 1.2960 1.3360 1.3750 1.4127
0 1 2 3 3 4 5 5 6 7	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt % 44.00 wt % 48.00 wt % 50.00 wt %	1.2741 1.3182 1.3614 1.4030 1.4435 1.4825 1.5210	1.2658 1.3094 1.3520 1.3933 1.4334 1.4720 1.5102	1.2629 1.3064 1.3490 1.3900 1.4300 1.4685 1.5065	1.2512 1.2942 1.3362 1.3768 1.4164 1.4545 1.4922	1.2388 1.2814 1.3232 1.3634 1.4027	1.2259 1.2682 1.3097 1.3498 1.3889 1.4266	1.2124 1.2546 1.2960 1.3360 1.3750 1.4127 1.4503
0 1 2 3 3 4 5 5 6 7 7 8 5 6 7 7 7 7 7 7 7 7 7	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt % 44.00 wt % 48.00 wt % 50.00 wt %	1.2741 1.3182 1.3614 1.4030 1.4435 1.4825 1.5210	1.2658 1.3094 1.3520 1.3933 1.4334 1.4720 1.5102	1.2629 1.3064 1.3490 1.3900 1.4300 1.4685 1.5065	1.2512 1.2942 1.3362 1.3768 1.4164 1.4545 1.4922	1.2388 1.2814 1.3232 1.3634 1.4027 1.4405 1.4781	1.2259 1.2682 1.3097 1.3498 1.3889 1.4266 1.4641	1.2124 1.2546 1.2960 1.3360 1.3750 1.4127 1.4503
0 1 2 3 4 5 5 7 8 's	24.00 wt % 28.00 wt % 32.00 wt % 36.00 wt % 40.00 wt % 44.00 wt % 48.00 wt % 50.00 wt %	1.2741 1.3182 1.3614 1.4030 1.4435 1.4825 1.5210	1.2658 1.3094 1.3520 1.3933 1.4334 1.4720 1.5102	1.2629 1.3064 1.3490 1.3900 1.4300 1.4685 1.5065	1.2512 1.2942 1.3362 1.3768 1.4164 1.4545 1.4922	1.2388 1.2814 1.3232 1.3634 1.4027 1.4405 1.4781	1.2259 1.2682 1.3097 1.3498 1.3889 1.4266 1.4641	1.1700 1.2124 1.2546 1.2960 1.3360 1.3750 1.4127 1.4503

	AQ	AR	AS	AT	AU	AV	A 34/
4 8	Table 8: Th	ermal Expansi	on of Carbon	Steel*	1	AV	AW
4 9)			I			1
50					3 x Linear Expa	l	4
51	Temp.°F	Temp.°C	Lin. Expan./°F	Lin. Expan./°C	Vol. Expan./	C	·
5 2		-3.9	5.96E-06	1.07E-05	1		-j· · ·
53		10	6.01E-06	1.08E-05			+
5 4		21.1	6.07E-06		3.28E-05		†
55		37.8	6.13E-06	1.10E-05	3.31E-05		·
56		51.7	6.19E-06	1.11E-05	3.34E-05		·
57		65.6	6.25E-06	1.13E-05	3.38E-05		
58		79.4	6.31E-06	1.14E-05	3.41E-05		<u> </u>
59		93.3	6.38E-06	1.15E-05	3.45E-05		I
60	225	107.2	6.43E-06	1.16E-05	3.47E-05		1
61	 	 					
63	13	<u> </u>		·			1
64	Linear. Ex	pan/°C	1	·			1
65	1.07E-05		(pred)-(measur	ed)			1
66	1.08E-05		-7.40E-09				
67	1.09E-05		9.54E-09				
68	1.10E-05		-1.29E-08				1
69			7.43E-09			<u></u>	
70	1.12E-05		6.38E-09				
71	1.13E-05	<u>. </u>	5.32E-09			· · · · · · · · · · · · · · · · · · ·	
72	1.14E-05		4.26E-09				
	1.15E-05		-1.48E-08			1	
73	1.16E-05		2.15E-09				
74		rms deviation	8.68E-09 I	ength/(°C*leng	th)	`	
76	·					i	
		Curve fit uncert	tainty = 2 x rms	dev. =	1.736E-08 /	°C ¦	
77		<u> </u>			-	· ·	i
78	<u> </u>	Least-sq. fit: Vo	olumetric Coeffic	ient Thermal E:	xpansion =	1	
79 80		b0 + b1x(T, °C),	in/in°C, cm/cm	°C		Ī	
81		Pressure: 1 atm				i	- 1
82		b0	1.08E-05				
83		b1	7.70E-09		I	1 	
84	*course: Desail	corr. coef.	0.999513			 	
85	source. Perry	S Chemical Eng	ineers Handbool	k, 6th Edition, 1	1984, (p. 6-89)]
86						; t	
87							
88						,	
89					رأب بالعامات		1
90							Į.
91						1	
						!	Ì

DISTRIBUTION

- M. R. BUCKNER, 773-42A
- W. L. TAMOSAITIS, 773-A
- J. E. MARRA, 703-H
- J. R. CHANDLER, 703-H
- J. A. PIKE, 703-H
- J. P. MORIN, 719-4A
- W. E. PHILLIPS, 241-152H
- D. D. WALKER, 773A
- D. R. MUHLBAIER, 786-5A
- J. L. STEIMKE, 786-5A
- M. R. DUIGNAN, 786-5A (2)
- W. F. AYRES, 773-42A
- ETF File, 786-5A
- SRTC RECORDS (2)

684301

Record Indexing
Required with all records submitted to D&RA
Print or type in black ink.

To		Part A — Transi		Transmittal Ne	-
To Document and D		I consi	nittal		
Document and Records	Administration	Location 773-52		Date	
From			1	4/26/94	
Mark R. Duignan		Location 786-5A		Dept	Phone
Items in structed italic print are requ	ired for all	1,00-2H		STD	5-8256
Keywords and other	ned for all records.				
Keywords and other information are	also required and shall be supplied	ed as necessari	to incure ex-	• • •	
N	Part B — Indexing I	nformati- 15	io insure accurate a	and tirnely record retrieval.	
Document (D WSRC-TR-94-0142	Part B — Indexing I	Sheet	npleted by Origina	ator)	
		Suger	Revision Rev. 0	Document Type	*
Alternate ID Task: 93-042-0		Sheet		Technical Re	port
Task. 93-042-0	•	oneet	Revision		<u> </u>
Final Report: Enhanced W	hand had been seen as a se				
Final Report: Enhanced Waste Ta Buthor/Originstor	ank Level Model (U)			Tine Classification	
и. R. Duignan				Unclassified	
•					
ecunity Classification of Record					
				· · · · · · · · · · · · · · · · · · ·	
ocument for Revision) Date (YYM	MDD)				
				No. of Pages	
Detection	gement, High Level Waste	Waste Tank			
Pywords H Area, Waste Mana Detection System, Le	evel Indicators	Tuole rank	s, computer, Mo	odel, Environmental Effec	cts. Leak
					,
persedes	Design/Engine	ering Dogum			
evisedes	Sheet		T Descriptors evision		
		1146			
ference Desum		1	evision	Supr-DTD	
ference Document	Sheet			Supr-DTD	
	Sheet		evision	Supr-DTD Supr-DTD	
ference Document uipment	Sheet	Re	evision		
uipment	Sheet	Re			
	Sheet	He Ma	evision	Subr-DTD	
uipment	Sheet	He Ma	evision	Subr-DTD	
uipment	Sheet	He Ma	evision	Subr-DTD	
uipment stem ding		He Ma	evision	Subr-DTD	
uipment	Elevation	Re Ma	evision	Subr-DTD	
uipment stem dina ect Number		Re Ma	evision	Subr-DTD	
uipment stem ding	Elevation Project File Num	Re Ma	evision	Subr-DTD	
uipment stem dina ect Number ian Function	Elevation	Re Ma	evision	Subr-DTD	
uipment stem dina ect Number ian Function	Elevation Project File Num Category	Re Ma	evision Iterial rchase Order Numb	Supr-DTD Per Area Design Area	
uipment stem dina ect Number ian Function	Elevation Project File Num Category	Re Ma	evision Iterial rchase Order Numb	Supr-DTD Per Area Design Area	
uipment stem dina ect Number ian Function manent	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Der Area Design Area	,
uipment stem dina ect Number ian Function	Elevation Project File Num Category Retentor Soring Permanent	Re Ma	aterial rchase Order Numb	Supr-DTD Der Area Design Area	
uipment stem dina ect Number ian Function manent ord Location	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Der Area Design Area	7.
uipment stem dina ect Number ian Function manent	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Der Area Design Area	7.26
uipment stem ding ect Number ian Function suiton Ferent (Freil) manent ord Location smitted By	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Der Area Design Area	28:
uipment stem dina ect Number ian Function manent ord Location	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Der Area Design Area (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	285
ding ect Number ian Function when Ferent Visit manent ord Location smitted By ived By	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Design Area Design Area Design Area Design Area Design Area	205
uipment stem ding ect Number ian Function suiton Ferent (Freil) manent ord Location smitted By	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Der Area Design Area (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	289
ding ect Number ian Function when Ferent Visit manent ord Location smitted By ived By	Elevation Project File Num Category Retentor Soring Permanent	Punber	aterial rchase Order Numb	Supr-DTD Design Area Design Area Design Area Design Area Design Area	